基于Boosting-Monodepth的管道病害深度估计与三维重建
作者:
作者单位:

1.郑州大学 黄河实验室(郑州大学),河南 郑州 450001;2.上海防灾救灾研究所,上海 200092;3.城市安全风险监测预警应急管理部重点实验室,上海 200092;4.北京北排建设有限公司,北京 100071;5.深圳市博铭维技术股份有限公司,广东 深圳 518000

作者简介:

方宏远(1982—),男,教授,博士生导师,工学博士,主要研究方向为地下排水管网非开挖修复。 E-mail: 18337192244@163.com

通讯作者:

王念念(1989—),女,教授,硕士生导师,工学博士,主要研究方向为排水管道智能检测。 E-mail: wnnian@zzu.edu.cn

中图分类号:

U178

基金项目:

国家自然科学基金(51978630);国家重点研发计划(2022YFC3801000)


Pipeline Damage Depth Estimation and 3D Reconstruction Based on Boosting-Monodepth Algorithm
Author:
Affiliation:

1.Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China;2.Shanghai Institute of Disaster Prevention and Relief, Shanghai 200092, China;3.Key Laboratory of Urban Safety Risk Monitoring and Early Warning of the Ministry of Emergency Management, Shanghai 200092, China;4.Beijing Beipai Construction Co., Ltd., Beijing 100071, China;5.Shenzhen Bomingwei Technology Co., Ltd., Shenzhen 518000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市地下管道是城市的血脉经络,但随着排水管道的大量投入运营和使用年限增加,引发了一系列的管道病害安全隐患,如管道整体结构变形、内表面破裂和管中异物插入等问题,传统的病害图像视频采集、检测和后期病害分类甄选都是从二维视角出发,欠缺对三维空间信息(深度)的考虑。针对上述3种病害从生成深度图、由二维深度图重建三维管道病害这两方面进行研究,提出了一种基于boosting-monodepth的双重深度估计方法以提升深度图效果,最终生成画面连续一致、轮廓清晰的深度图。性能评估方面采用Abs-Rel、RMSE、SqRel、ORD和D3R等通用指标,与传统算法对比,结果显示boosting-monodepth的RMSE值降低了30%,精确度指标δ<1.25时,模型深度信息预测精确度提高了18%,此后以得到的深度图为基础重建管道病害三维点云,并在CloudCompare软件上三维可视化,最后采用随机采样一致算法测算病害深度并和实测数据对比证明其有效性和准确性。

    Abstract:

    Urban underground pipelines are the blood channels of the city. However, with the large number of drainage pipelines put into operation and their service life increasing, a series of hidden dangers of pipeline diseases have arisen, such as the overall structural deformation of the pipeline, internal surface cracking, and the insertion of foreign matters in the pipeline. Traditional disease image video capture, detection, and later disease classification and selection are conducted from a two-dimensional(2D) perspective, lacking consideration of three-dimensional spatial information (depth). Aimed at the above three diseases, an experiment is conducted from generating depth maps and reconstructing three-dimensional(3D) pipeline diseases from 2D depth maps. A dual depth estimation method based on boosting-monodepth is proposed to improve the effect of depth maps, and finally a depth map with continuous and consistent images and clear outlines is generated. In terms of performance evaluation, Abs-Rel, RMSE, SqRel, ORD, D3R and other general indexes are compared with those of the traditional algorithm, and the results show that the boosting-monodepth is reduced by 30% at RMSE and increased by 18% at a threshold of δ< 1.25. Afterwards, the 3D point cloud of pipeline disease is reconstructed based on the depth map obtained, and 3D visualization is performed on CloudCompare. Finally, the disease depth is calculated using the random sampling consistent algorithm and compared with the real measured data to prove its effectiveness and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

方宏远,姜雪,王念念,胡群芳,雷建伟,王飞,赵继成,代毅.基于Boosting-Monodepth的管道病害深度估计与三维重建[J].同济大学学报(自然科学版),2023,51(2):161~169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-03
  • 出版日期:
文章二维码