基于稠密连接网络的地下水污染替代模型研究
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.长江生态环保集团有限公司,江苏南京 210019;3.上海理工大学 环境与建筑学院,上海 200093

作者简介:

江思珉:论文方向指定与指导。孔维铭:论文主体内容撰写。吴延浩:论文模型参数调整实验。刘金炳:指导论文模型代码修改。张春秋:论文图例设计与修改。夏学敏:提供论文内容意见与协助修改。

通讯作者:

江思珉(1980—),男,副教授,工学博士,主要研究方向为地下水科学与工程。 E-mail:jiangsimin@tongji.edu.cn

中图分类号:

P641.2;X523

基金项目:

国家自然科学基金(42077176);南京水利科学院水文水资源与水利工程科学国家重点实验室重点基金(2019nkzd01)


A DenseNet Network Based Surrogate Model for Simulating Contaminant Transport in Groundwater Systems
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Yangtze Ecology and Environment Co., Ltd., Nanjing 210019, China;3.School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    地下水污染溯源和含水层参数反演问题等地下水逆问题通常面临计算负荷量的制约,考虑使用替代模型作为解决方法,从而降低地下水反演问题的计算成本。借鉴卷积神经网络的图像识别过程,考虑将地下水流运动和污染物运移问题转化为输入场图像(渗透系数场、污染源信息等)与输出场图像(水头场、浓度场等)之间函数关系的图像回归问题,利用基于稠密连接网络的AR-Net-WL构建地下水流运动和污染物运移的替代模型。算例研究表明,针对替代模型的过拟合现象,尽可能选择较大的训练样本可获得约10%的精度提升;当没有条件增加训练样本时,采用最优正则项系数的AR-Net-WL在训练样本较少的情形下(训练样本500)也能够取得良好的性能,能够精确预测地下水流运动和污染物运移。

    Abstract:

    Groundwater inverse problems such as groundwater contaminant identification and aquifer parameter inversion problems are usually restricted by the computational load. In order to reduce the computational cost of groundwater inversion, the surrogate method is a feasible solution. In this paper, imitating the image recognition process of the convolutional neural network, the groundwater flow movement and contaminant transport problem is transformed into an image regression problem of the functional relationship between input image (hydraulic conductivity field, pollution source information, etc.) and output image (groundwater level, contaminant concentration, etc.). The surrogate model of groundwater flow movement and contaminant transport is constructed by using AR-Net-WL based on the DenseNet network. The case study shows that, for the overfitting of the surrogate model, a 10% improvement in accuracy can be obtained by selecting training samples as large as possible. When there are no conditions to increase the training sample, AR-Net-WL with an optimal regularization coefficient can also achieve a good performance with fewer training samples (500 training samples) and can accurately predict the groundwater flow movement and contaminant transport.

    参考文献
    相似文献
    引证文献
引用本文

江思珉,孔维铭,吴延浩,刘金炳,张春秋,夏学敏.基于稠密连接网络的地下水污染替代模型研究[J].同济大学学报(自然科学版),2023,51(2):229~237

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-03
  • 出版日期:
文章二维码