电磁悬浮型高速磁浮车-岔垂向动力响应
CSTR:
作者:
作者单位:

同济大学 国家磁浮交通工程技术研究中心,上海201804

作者简介:

曾国锋(1970—),男,副研究员,工学博士,主要研究方向为磁浮线路与轨道结构、车-轨动力学及检测技术。 E-mail:zengguofeng@tongji.edu.cn

通讯作者:

韩紫平(1992—),男,工学博士,主要研究方向为磁浮线路与轨道振动、结构健康监测及振动控制。 E-mail:hanziping@tongji.edu.cn

中图分类号:

U237

基金项目:

国家自然科学基金(52272375,52232013)


Vertical Dynamic Response of Electromagnetic Suspension High-speed Maglev Vehicle-turnout
Author:
Affiliation:

National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    从车辆构造特点出发,建立电磁悬浮(EMS)型高速磁浮车辆悬浮架、悬浮电磁铁链式结构动力学模型,并引入基于状态观测器的悬浮控制算法。结合反映道岔结构特征及动力特性的有限元模型,建立车-岔系统动力响应分析模型。仿真结果表明,所提出精细化模型的数值模拟结果与实测数据较为接近。在此基础上,开展了单节和多节编组列车在静悬以及低速和高速通过道岔等多种工况下的仿真试验,分析了不同影响因素下高速磁浮车-岔系统振动特征。仿真和实测结果表明,明确车-岔-悬浮控制之间的参数匹配关系是揭示车-岔相互作用机理的前提和关键。

    Abstract:

    Based on the structural characteristics of vehicles, a dynamical model of suspension frame and suspension magnet chain structure of electromagnetic suspension (EMS) high-speed maglev vehicle was established, and the suspension control algorithm based on state observer was introduced to simulate the active suspension control. Combining with the finite element model reflecting the unique structural and dynamical characteristics of maglev turnout, a numerical analysis model of maglev vehicle-turnout system was established. It is shown that simulation results are close to the in-situ measurements. On this basis, the dynamic response analysis of vehicle-turnout in single- and multi-car formation at low, medium and high-speed running through the turnout was carried out. Both numerical and experimental results show that defining the parameter matching relation of the vehicle-turnout-suspension control system is the premise and key to reveal the interaction mechanism between the maglev vehicle and turnout.

    参考文献
    [1] GOTTZEIN E, LANGE B. Magnetic suspension control systems for the MBB high-speed train [J]. Automatica, 1975, 11(3): 271.
    [2] GOTTZEIN E, MEISINGER R, MILLER L. The “magnetic wheel” in the suspension of high-speed ground transportation vehicles [J]. IEEE Transactions on Vehicular Technology, 1980, 29: 17.
    [3] SINHA P K. Electromagnetic suspension dynamics & control [M]. London: Peter Peregrinus Ltd., 1987.
    [4] 李云钢,常文森. 磁浮列车悬浮系统的串级控制[J]. 自动化学报, 1999,25(2):247LI Yungang, CHANG Wensen. Cascade control of an EMS maglev vehicle’s levitation control system [J]. Acta Automatica Sinica, 1999, 25(2):247.
    [5] 刘恒坤,常文森,施晓红. 磁悬浮系统车轨耦合振动研究[J]. 计算机仿真, 2006,23(9):256.LIU Hengkun, CHANG Wensen, SHI Xiaohong. Vehicle-coupled-guideway vibration in maglev system [J]. Computer Simulation, 2006,23(9):256.
    [6] 刘恒坤,郝阿明,常文森. 弹性轨道上的磁悬浮系统控制方法研究[J]. 控制工程, 2008,15(4):392.LIU Hengkun, HAO Aming, CHANG Wensen. On control methods of the magnetic suspension system on elastic track [J]. Control Engineering of China, 2008,15(4):392.
    [7] 梁鑫. 磁浮列车车轨耦合振动分析及试验研究[D]. 成都: 西南交通大学, 2015.LIANG Xin. Study on maglev vehicle/guideway coupled vibration and experiment on test rig for a levitation stock [D]. Chengdu: Southwest Jiaotong University, 2015.
    [8] 吴晗, 曾晓辉,史禾慕.考虑间隙反馈控制时滞的磁浮车辆稳定性研究[J]. 力学学报, 2019,51(2):550.WU Han, ZENG Xiaohui, SHI Hemu. Stability analysis of maglev vehicle with delayed position feedback control [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):550.
    [9] CAI Y, CHEN S S, ROTE D M. Vehicle/guideway interaction for high speed vehicles on a flexible guideway[J]. Journal of Sound and Vibration, 1994,175:625.
    [10] 曾佑文,王少华,张昆仑. EMS磁浮列车-轨道垂向耦合动力学研究[J]. 铁道学报,1999,21(2):21.ZENG Youwen, WANG Shaohua, ZHANG Kunlun. A study of vertical coupling dynamics of EMS maglev train and guideway systems [J]. Journal of the China Railway Society, 1999,21(2):21.
    [11] 赵春发,翟婉明,蔡成标. 磁浮车辆/高架桥垂向耦合动力学研究[J].铁道学报,2001,23(5):27.ZHAO Chunfa, ZHAI Wanming, CAI Chengbiao. Maglev vehicle/elevated-beam guideway vertical coupling dynamics [J]. Journal of the China Railway Society, 2001,23(5):27.
    [12] 赵春发. 磁悬浮车辆系统动力学研究[D]. 成都: 西南交通大学, 2002.ZHAO Chunfa. Maglev vehicle system dynamics [D]. Chengdu: Southwest Jiaotong University, 2002.
    [13] 罗世辉. TR08车辆系统(含轨道)动力学建模与仿真研究[R]. 成都:西南交通大学, 2003.LUO Shihui. Dynamic modeling and simulation of TR08 vehicle system (guideway included) [R]. Chengdu: Southwest Jiaotong University, 2003.
    [14] 朴明伟,王建一,梁世宽,等. 高速磁浮车辆车桥耦合机制的探讨[J]. 铁道机车车辆, 2007, 27(5):9.PIAO Mingwei, WANG Jianyi, LIANG Shikuan, et al. Discussion on high-speed maglev vehicle’s coupling mechanism between vehicle and bridge [J]. Railway Locomotive & Car, 2007, 27(5):9.
    [15] 时瑾,魏庆朝. 线路不平顺对高速磁浮铁路动力响应特性的影响[J]. 工程力学, 2006, 23(1):154.SHI Jin, WEI Qingchao. The effect of guideway irregularity on the dynamic characteristics of high-speed maglev railway [J]. Engineering Mechanics, 2006, 23(1):154.
    [16] 滕延锋. 高速磁浮轨道梁在车辆荷载作用下的振动研究[D]. 上海: 上海交通大学, 2008.TENG Yanfeng. The study of vibration of high speed maglev guideway interacting with vehicle [D]. Shanghai: Shanghai Jiaotong University, 2008.
    [17] 王党雄,李小珍,梁林. 中低速磁浮列车-桥梁系统竖向耦合振动理论分析与试验验证[J]. 土木工程学报, 2019, 52(8):81.WANG Dangxiong, LI Xiaozhen, LIANG Lin. Theoretical analysis and experimental verification of the vertical coupling vibration of low-to-medium speed maglev train-bridge system [J]. China Civil Engineering Journal, 2019, 52(8):81.
    [18] 任晓博. 中低速磁浮车辆-轨道-桥梁耦合振动仿真分析[D]. 成都: 西南交通大学, 2018.REN Xiaobo. Numerical analysis on coupled vibration of medium-low speed maglev vehicle-track-viaduct system [D]. Chengdu: Southwest Jiaotong University, 2018.
    [19] 蔡文涛. 基于车桥耦合振动分析高速磁浮轨道梁体系的动力特性研究[D]. 上海: 上海交通大学, 2020.CAI Wentao. Research on dynamic characteristics of high speed maglev track beam system based on coupling vibration of vehicle and bridge [D]. Shanghai: Shanghai Jiaotong University, 2020.
    [20] FICHTNER K, PICHLMEIER F. The transrapid guideway switch: test and verification[C] //Maglev 2004 Proceedings, 18th International Conference on Magnetically Levitated Systems and Linear Drives. Shanghai:[s.n.], 2004: 624-631.
    [21] DIGNATH F, LIU X F, ZHENG Q H. Dynamic behavior of guideway switch beams[C]// Proceedings of the Maglev 2006. Dresden: [s.n.], 2006: 1-7.
    [22] 殷月俊, 罗汉中, 黄醒春. 高速磁浮道岔振动响应的原位实测[J]. 上海交通大学学报, 2007, 41(4): 658.YIN Yuejun, LUO Hanzhong, HUANG Xingchun. In situ research of dynamic response of maglev turnout [J]. Journal of Shanghai Jiaotong University, 2007, 41(4): 658.
    [23] 曾国锋. 国产高速磁浮道岔研制[R]. 上海: 同济大学, 2010.ZENG Guofeng. Development of domestic high speed maglev turnout [R]. Shanghai: Tongji University, 2010.
    [24] 顾行涛,赵春发,翟婉明. 磁浮道岔梁自振特性及瞬态响应分析[J]. 交通运输工程与信息学报, 2009, 7(4):56.GU Xingtao, ZHAO Chunfa, ZHAI Wanming. Natural vibration and transient response of maglev switch beam [J]. Journal of Transportation Engineering and Information, 2009, 7(4):56.
    [25] 张宇生. 中低速磁浮车辆-道岔主动梁耦合振动仿真分析[D]. 成都: 西南交通大学, 2019.ZHANG Yusheng. Analysis and simulation of coupling vibration between medium-low speed maglev vehicle and active switch beam [D]. Chengdu: Southwest Jiaotong University, 2019.
    相似文献
    引证文献
引用本文

曾国锋,韩紫平,刘鸣博,朱志伟.电磁悬浮型高速磁浮车-岔垂向动力响应[J].同济大学学报(自然科学版),2023,51(3):303~313

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-08
  • 在线发布日期: 2023-03-29
文章二维码