基于博弈论赋权耦合灰色关联分析的调蓄池优化选址
CSTR:
作者:
作者单位:

1.太原理工大学 环境科学与工程学院,山西 晋中030600;2.山西省市政工程研究生教育创新中心,山西 晋中030600

作者简介:

李红艳(1975—),女,副教授,工学博士,主要研究方向为城市水资源与水系统、水处理与能源资源化。 E-mail:lhy3162@126.com

通讯作者:

张 翀(1997—),男,硕士生,主要研究方向为城市水资源与水系统。E-mail:1650287666@qq.com

中图分类号:

TU992

基金项目:

山西省科技成果转化引导专项(201904D131065);吕梁市引进高层次科技人才重点研发项目(2021RC-1-22)


Optimal Location of Storage Tanks Based on Game Theory Weighting GRA-TOPSIS
Author:
Affiliation:

1.School of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China;2.Shanxi Municipal Engineering Graduate Education Innovation Center, Jinzhong 030600, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在构建城市内涝风险评估指标体系的基础上,采用博弈论(GT)思想将层次分析法(AHP)所得主观权重与改进熵值法(IEVM)所得客观权重组合赋权,并将灰色关联分析(GRA)与逼近理想解排序(TOPSIS)相结合,建立量化评估框架,最终通过各节点的相对贴近度确定调蓄池的位置。结果表明:GRA-TOPSIS所得综合值的变异系数为0.628,均高于单独使用GRA或TOPSIS的变异系数,更有利于对各节点内涝风险进行辨识。此外,应用该方法对消除城市内涝风险、提高城市防涝标准有显著效果。

    Abstract:

    After constructing the index system of urban waterlogging risk assessment, the idea of game theory (GT) was used to combine the subjective weight obtained by the analytic hierarchy process (AHP) and the objective weight obtained by the improved entropy value method (IEVM). The quantitative evaluation framework was established by combining the grey relation analysis (GRA) with the technique for order preference by similarity to ideal solution (TOPSIS), and finally the location of the storage tanks was determined by the relative closeness of each node. It is shown that the coefficient of variation of the comprehensive value from GRA-TOPSIS is 0.628, higher than that from GRA or TOPSIS alone, which is more conducive to the identification of waterlogging risk at each node. In addition, the method can eliminate the risk of urban waterlogging and improve the standard of urban waterlogging prevention.

    参考文献
    [1] 黄国如,何泓杰. 城市化对济南市汛期降雨特征的影响[J].自然灾害学报,2011,20(3):7.HUANG Guoru, HE Hongjie. The impact of urbanization on the rainfall characteristics of Jinan during the flood season[J].Journal of Natural Disasters, 2011,20(3):7.
    [2] 左其亭. 我国海绵城市建设中的水科学难题[J].水资源保护,2016,32(4):21.ZUO Qiting. Water science problems in the construction of sponge cities in my country[J].Water Resources Protection, 2016,32(4):21.
    [3] 高玉琴,陈佳慧,王冬冬, 等. 海绵城市低影响开发措施综合效益评价体系及应用[J].水资源保护,2021,37(3):13.GAO Yuqin, CHEN Jiahui, WANG Dongdong, et al. Comprehensive benefit evaluation system and application of low-impact development measures for sponge cities[J].Water Resources Protection,2021,37(3):13.
    [4] LI Huifeng,LU Lijun,HUANG Xiangfeng,et al. An optimal design strategy of decentralized storage tank locations for multi-objective control of initial rainwater quality [J]. Water Supply, 2020,20(6):2069。
    [5] 邓培德. 雨水调节池设置位置的效益分析[J].中国给水排水,1987(1):23.DENG Peide. Benefit analysis of the location of rainwater regulation ponds[J].China Water & Wastewater, 1987(1):23.
    [6] DUAN Huanfeng,LI Fei,TAO Tao. Multi-objective optimal design of detention tanks in the urban stormwater drainage system: framework development and case study [J]. Water Resources Management,2015,29(7):2125.
    [7] C-H LIAW, Y-L TSAI, CHENG M-S. Assessing flood mitigation alternatives in Shijr area in metropolitan Taipei [J]. Journal of the American Water Resources Association,2006, 42(2): 311.
    [8] 郭芝瑞,崔建国,张峰,等. 基于Infoworks ICM的城市排水调蓄池位置选择[J].给水排水,2016,52(2):49.GUO Zhirui, CUI Jianguo, ZHANG Feng, et al. Location selection of urban drainage storage tank based on Infoworks ICM[J]. Water & Wastewater Engineering,2016,52(2):49.
    [9] 杨昊宇. 基于TFN-AHP的海绵城市调蓄池选址模糊综合评判[D].桂林:桂林理工大学,2018.YANG Haoyu. Fuzzy comprehensive evaluation of sponge city storage pool location based on TFN-AHP[D]. Guilin:Guilin University of Technology, 2018.
    [10] 张翀,李红艳,崔建国,等.基于AHP-GRA的城市内涝风险评估及调蓄池选址[J].给水排水,2021,57(11):149.ZHANG Chong, LI Hongyan, CUI Jianguo, et al. Urban waterlogging risk assessment based on AHP-GRA and site selection of storage tanks [J]. Water & Wastewater Engineering, 2021, 57(11): 149.
    [11] 汪明明,孙远祥,马雄飞.基于SWMM和层次分析法的调蓄池预选址方案选择[J].水资源与水工程学报,2017,28(1):120.WANG Mingming,SUN Yuanxiang,MA Xiongfei.Scheme selection of storage tank pre-selection based on SWMM and analytic hierarchy process[J].Journal of Water Resources and Water Engineering,2017,28(1):120.
    [12] LAI Chengguang,CHEN Xiaohong,CHEN Xiaoyu. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory[J]. Natural Hazards,2015,77(2):1243.
    [13] 张曾莲.风险评估方法[M].北京:机械工业出版社,2017.ZHANG Zenglian.Risk assessment method [M]. Beijing: China Machine Press, 2017.
    [14] 项颂,庞燕,侯泽英, 等.基于熵值法的云南高原浅水湖泊水生态健康评价[J].环境科学研究,2020,33(10):2272.XIANG Song, PANG Yan, HOU Zeying, et al. Water ecological health assessment of shallow lakes in Yunnan Plateau based on entropy method[J]. Environmental Science Research,2020,33(10):2272.
    [15] 刘震宇. 灰色系统分析中存在的两个基本问题[J].系统工程理论与实践,2000(9):123.LIU Zhenyu. Two basic problems in grey system analysis[J].System Engineering Theory and Practice,2000(9):123.
    [16] 周翔,蒋根谋. 基于组合赋权和改进灰色关联分析法的项目风险分析[J].建筑管理现代化,2008(6):78.ZHOU Xiang, JIANG Genmou. Project risk analysis based on combined weighting and improved grey relational analysis method[J]. Building Management Modernization,2008(6):78.
    [17] 桂晗亮,张春萍,武治国. 基于BP神经网络的人机联合率定SWMM研究[J].中国农村水利水电,2021(3):36.GUI Hanliang, ZHANG Chunping, WU Zhiguo. Research on SWMM calibration based on BP neural network [J]. China Rural Water and Hydropower, 2021(3): 36.
    [18] 何胜男,陈文学,刘燕, 等. 基于人工神经网络和粒子群优化的初期雨水调蓄池设计方法研究[J].水利学报,2020,51(12):1558.HE Shengnan, CHEN Wenxue, LIU Yan, et al. Research on the design method of initial rainwater storage tank based on artificial neural network and particle swarm optimization[J]. Journal of Hydraulic Engineering, 2020, 51(12):1558.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李红艳,张翀,崔建国,张峰,马熠阳,史文韬.基于博弈论赋权耦合灰色关联分析的调蓄池优化选址[J].同济大学学报(自然科学版),2023,51(3):426~432

复制
分享
文章指标
  • 点击次数:126
  • 下载次数: 473
  • HTML阅读次数: 83
  • 引用次数: 0
历史
  • 收稿日期:2021-10-28
  • 在线发布日期: 2023-03-29
文章二维码