自动网格体系在柱体绕流大涡模拟中的适用性评估
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院 上海 200092;2.同济大学 土木工程防灾国家重点实验室 上海 200092

作者简介:

张宇鑫(1996—),男,博士生,主要研究方向为桥梁与结构抗风。E-mail : 2014yuxin@tongji.edu.cn

通讯作者:

曹曙阳(1966—),男,教授,博士生导师,工学博士,主要研究方向为桥梁与结构抗风。 E-mail : shuyang@tongji.edu.cn

中图分类号:

O355

基金项目:

国家自然科学基金(52078382),国家留学高水平公派研究生项目基金(202106260153)


Assessment of Applicability of Auto-Generated Grid in Large Eddy Simulation of Flow Around a Cylinder
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai, 200092, China;2.State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了评估基于snappyHexMesh方法生成的自动网格体系在二维柱体绕流大涡模拟中的适用性,比较了该自动网格体系与人工网格体系对于Re为3 900圆柱绕流和Re为22 000方柱绕流的数值模拟结果。通过设置合理的计算域以及数值格式,采用snappyHexMesh自动网格以及人工网格的算例都表现出良好的数值稳定性。将不同网格体系的数值模拟结果与物理试验结果进行对比,结果表明,采用snappyHexMesh网格可以提高数值求解效率;圆柱绕流对网格体系的变化比较敏感,不同密度的snappyHexMesh网格会显著影响圆柱气动力特征以及尾流区域的流场结果;snappyHexMesh网格体系可以准确预测方柱绕流,在方柱绕流大涡模拟中具有相较于圆柱绕流更好的适用性。

    Abstract:

    To assess the applicability of an auto-generated grid system named snappyHexMesh grid in large eddy simulation, the simulation results of the flow around a circular cylinder at an Re of 3 900 and a square cylinder at an Re of 22 000 based on both the snappyHexMesh grid system and the artificial grid system were compared in this paper. By configuring suitable computational domains and setting proper numerical schemes, both the snappyHexMesh grid and the artificial grid system show good numerical stability during each simulation process. The comparison of the numerical results using different grid systems with the experimental data shows that using the snappyHexMesh grid can enhance the numerical efficiency; the flow around a circular cylinder is sensitive to the change of the grid system, and the snappyHexMesh grid with different densities will significantly affect the aerodynamic characteristics and the flow structures in the wake of a circular cylinder; the flow around a square cylinder can be accurately reproduced using snappyHexMesh grid system, and the snappyHexMesh grid system has a better applicability in large eddy simulation of the flow around a square cylinder than that of a circular cylinder.

    参考文献
    [1] VERSTEEG H, MALALASEKERA W. An introduction to computational fluid dynamics: The finite volume method approach [M]. Essex, England: Bell &Bain Limited,1996.
    [2] CELIK I B, CEHRELI Z N, YAVUZ I. Index of resolution quality for large eddy simulations [J]. Journal of Fluids Engineering, 2005, 127(5): 949.
    [3] WANG W, GAO Y, OKAZE T. Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES [J]. Building and Environment, 2021, 195: 107717.
    [4] MUKHA T, BENSOW R E, LIEFVENDAHL M. Predictive accuracy of wall-modelled large-eddy simulation on unstructured grids [J]. Computers & Fluids, 2021, 221: 104885.
    [5] 周强, 曹曙阳, 周志勇. 亚临界雷诺数下圆柱体尾流结构的数值模拟 [J]. 同济大学学报(自然科学版), 2013, 41(1): 33.ZHOU Qiang, CAO Shuyang, ZHOU Zhiyong. Numerical studies of wake characteristics on a circular cylinder at sub-critical Reynolds number [J]. Journal of Tongji University (Natural Science), 2013, 41(1): 33.
    [6] 王蒙恩, 曹曙阳, 操金鑫. 龙卷风风场的数值模拟研究 [J]. 同济大学学报(自然科学版), 2019, 47(11):1548.WANG Mengen, CAO Shuyang, CAO Jinxin. Numerical study of tornado-like flow [J]. Journal of Tongji University (Natural Science), 2019, 47(11):1548.
    [7] RICCI M, PATRUNO L, DE MIRANDA S. Wind loads and structural response: Benchmarking LES on a low-rise building [J]. Engineering Structures, 2017, 144: 26.
    [8] DU Y, MAK C M, AI Z. Modelling of pedestrian level wind environment on a high-quality mesh: A case study for the HKPolyU campus [J]. Environmental Modelling & Software, 2018, 103: 105.
    [9] CAVAR D, RETHORE P E, BECHMANN A, et al. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain [J]. Wind Energy Science, 2016, 1: 55.
    [10] RAKAI A, KRISTOF G, FRANKE J. Sensitivity analysis of microscale obstacle resolving models for an idealized central European city center, Michel-Stadt [J]. Idojaras, 2014, 118: 53.
    [11] SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91: 99.
    [12] LILLY D K. On the application of the eddy viscosity concept in the inertial sub-range of turbulence [J]. Ncar Manuscript, 1967, 123: 1.
    [13] NORBERG C. Flow around a circular cylinder: Aspects of fluctuating lift [J]. Journal of Fluid Structure, 2001, 15(3/4): 459.
    [14] ONG L, WALLACE J. The velocity field of the turbulent very near wake of a circular cylinder [J]. Experiments in Fluids, 1996, 20: 441.
    [15] LOURENCO M, SHIH C. Characteristics of the plane turbulent near wake of a circular cylinder.a particle image velocimetry study [J]. Laser Anemometry in Fluid Mech, 1993, 1(1): 51.
    [16] MANI A, MOIN P, WANG M. Computational study of optical distortions by separated shear layers and turbulent wakes [J]. Journal of Fluid Mechanics, 2009, 625: 273.
    [17] WORNOM S, OUVRARD H, SALVETTI M V, et al. Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects [J]. Computers & Fluids, 2011, 47: 44.
    [18] NISHIMURA H, TANIIKE Y. Fluctuating pressures on a two-dimensional aquare prism [J]. Journal of Structural and Construction Engineering (Transactions of AIJ), 2000, 65: 37.
    [19] OKA S, ISHIHARA T. Numerical study of aerodynamic characteristics of a square prism in a uniform flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97: 548.
    [20] NORBERG C. Flow around rectangular cylinders - pressure forces and wake frequencies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 187.
    [21] WANG G, VANKA S P. LES of flow over a square cylinder[C]// Proceedings of the Direct and Large-Eddy Simulation II. Dordrecht: Springer Netherlands, 1997: 397-440.
    [22] 周强, 廖海黎, 曹曙阳. 高雷诺数下方柱绕流特性的数值模拟 [J]. 西南交通大学学报, 2018, 53(3): 533.ZHOU Qiang, LIAO Haili, CAO Shuyang. Numerical study of flow characteristics around square cylinder at high Reynolds number [J]. Journal of Southwest Jiaotong University, 2018, 53(3): 533.
    [23] PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 [J]. Physics of Fluids, 2008, 20: 058101
    [24] LYN D A, EINAV S, RODI W, et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder [J]. Journal of Fluid Mechanics, 1995, 304: 285.
    [25] LYSENKO D A, ERTESVAG I S, RIAN K E. Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox [J]. Flow Turbulence and Combustion, 2012, 89: 491.
    [26] SRINIVAS Y, BISWAS G, PARIHAR A S, et al. Large-eddy simulation of high Reynolds number turbulent flow past a square cylinder [J]. Journal of Engineering Mechanics, 2006, 132: 327.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张宇鑫,曹曙阳,操金鑫.自动网格体系在柱体绕流大涡模拟中的适用性评估[J].同济大学学报(自然科学版),2023,51(4):542~550

复制
分享
文章指标
  • 点击次数:242
  • 下载次数: 527
  • HTML阅读次数: 112
  • 引用次数: 0
历史
  • 收稿日期:2021-11-08
  • 在线发布日期: 2023-04-26
文章二维码