河口航道双丁坝影响下异重流运动特性
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.佛罗里达州立大学 工程学院, 塔拉哈西 32310;3.上海河口海岸科学研究中心,上海 201201

作者简介:

黄硕(1993—),男,博士生,主要研究方向为河口异重流。Email:huangshuo@tongji.edu.cn

通讯作者:

刘曙光(1962—),男,教授,博士生导师,工学博士,主要研究方向为海洋科学、资源与环境、水利工程、岩 土工程。E-mail: liusgliu@tongji.edu.cn

中图分类号:

TV14

基金项目:

国家自然科学基金(51961145106);上海市科技创新行动计划(22ZR1464200, 22230712900);土木工程I类高峰学科建设项目(2022-3-YB-03);上海市科技计划(21DZ1201002)


Effects of Double Groins on Motion Characteristics of Density Current in Estuarine Navigation Channel
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Florida State University, FAMU-FSU College of Engineering,Tallahassee 32310, USA;3.Shanghai Estuarine and Coastal Research Center, Shanghai 201201, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在河口地区,由密度梯度驱动而产生的异重流是影响航道内泥沙输移的重要因素之一。作为航道整治中常见的建筑物,丁坝群可以缓解航道的泥沙淤积问题、提高通航能力。为探究双丁坝对异重流运动特性的影响,运用粒子图像测速系统(PIV)开展了开闸式异重流实验,研究了在不同束窄系数情况下,航道异重流稳定阶段内的流场及湍流特性,并对比分析了异重流在两个丁坝位置特征断面处的单宽流量及总流量。结果表明,双丁坝改变了航道内的流场,异重流在经过束窄断面后会向第二个丁坝后部区域横向扩散,进而使得流速加大、高度降低;异重流在两个丁坝束窄断面的单宽流量近似相同,且与束窄系数无关;异重流在束窄断面的总流量与断面宽度成正比,在实际工程中可以通过适当调整丁坝长度来控制侵入航道的异重流总量。

    Abstract:

    In estuaries, the density current driven by the density gradient is one of the most important factors affecting sediment transport in the channel. As the common buildings in the channel regulation, the groin group can alleviate the siltation and improve the navigation capacity. In order to explore the influence of double groins on the motion characteristics of density current, the particle image velocimetry (PIV) was used to measure the flow fields and turbulence characteristics of the lock-exchange density current in the stable stage under different narrowing coefficients. The unit flowrate and total flowrate of the density current at the two groin sections were compared. The results show that the double groins change the flow field in the channel. After passing through the narrowed sections, the density current diffuses laterally to the rear area of the second groin, resulting in the increase of velocity and the decrease of height. The unit flowrate of the density current in both sections of the two groins is approximately the same, which is independent of the narrowing coefficient. The total flowrate of the density current in the narrowed section is proportional to the width of this section. In practical engineering, the appropriate lengths of the groins can control the total amount of density current intruding channel.

    参考文献
    [1] HUPPERT H E, SIMPSON J E. The slumping of gravity currents[J]. Journal of Fluid Mechanics, 1980,99(8): 785.
    [2] 吕紫君, 冯佳佳, 郜新宇, 等. 磨刀门河口环流与咸淡水混合层化机制[J]. 水科学进展, 2017,28(6): 908.Zijun Lü, FENG Jiajia, GAO Xinyu, et al. Estuarine circulation and mechanism of mixing and stratification in the Modaomen estuary[J]. Advances in Water Science, 2017,28(6): 908.
    [3] 时钟, 熊龙兵, 倪智慧, 等. 潮汐河口环流、湍流、混合与层化的物理学[J]. 海岸工程, 2019,38(1): 1.SHI Zhong, XIONG Longbing, NI Zhihui, et al. The physics of circulation, turbulence, mixing and stratification in tidal estuaries[J]. Coastal Engineering, 2019,38(1): 1.
    [4] POSTMA H. Sediment transport and sedimentation in the estuarine environment[J]. American Association of Advanced Sciences, 1967,83: 158.
    [5] 沈焕庭, 贺松林, 潘定安, 等. 长江河口最大浑浊带研究[J]. 地理学报, 1992,47(5): 472.SHEN Huanting, HE Songlin, PAN Ding'an, et al. A study of turbidity maximum in the Changjiang estuary [J]. Acta Geographica Sinica, 1992,47(5): 472.
    [6] SHERWOOD C R, JAY D A, HARVEY R B, et al. Historical changes in the Columbia River estuary[J]. Progress in Oceanography, 1990,25(1/4): 299.
    [7] 付桂. 国内外河口航道治理经验及对长江口航道整治的启示[J]. 水运工程, 2016,522(11): 121.FU Gui. Experience of estuary channel regulation at home and abroad and enlightenment for regulation of the Yangtze estuary channel[J]. Port & Waterway Engineering, 2016,522(11): 121.
    [8] WAN Y, WANG L. Study on the seasonal estuarine turbidity maximum variations of the Yangtze estuary, China[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2018,144(3): 5018001.
    [9] MARTIN D, BERTASI F, COLANGELO M A, et al. Ecological impact of coastal defence structures on sediment and mobile fauna: evaluating and forecasting consequences of unavoidable modifications of native habitats[J]. Coastal Engineering, 2005,52(10/11): 1027.
    [10] WU W M, LI H H. A simplified physically-based model for coastal dike and barrier breaching by overtopping flow and waves[J]. Coastal Engineering, 2017,130: 1.
    [11] HUANG W, JONES W K, YANG Q. Field experiment study of transient stratified flow in an estuary[J]. Journal of Engineering Mechanics, 2003,129(10): 1220.
    [12] ZHU L, HE Q, SHEN J. Response of stratification processes to tidal current alteration due to channel narrowing[J]. Journal of Geophysical Research-Oceans, 2020,125(2):15223
    [13] MA G, SHI F, LIU S, et al. Hydrodynamic modeling of Changjiang estuary: model skill assessment and large-scale structure impacts[J]. Applied Ocean Research, 2011,33(1): 69.
    [14] SHEN Q, HUANG W R, WAN Y Y, et al. Observation of the sediment trapping during flood season in the deep-water navigational channel of the Changjiang estuary, China[J]. Estuarine Coastal and Shelf Science, 2020,237: 106632.
    [15] HUANG W. Enhancement of a turbulence sub-model for more accurate predictions of vertical stratifications in 3D coastal and estuarine modeling[J]. The International Journal of Ocean and Climate Systems, 2010,1(1): 37.
    [16] 郭浩淼. 基于PIV方法的河口航道盐淡水异重流特性实验研究[D]. 上海: 同济大学, 2017.GUO Haomiao. Experimental research of features of density-induced flow in estuarine navigation channel based on PIV method[D]. Shanghai: Tongji University, 2017.
    [17] HUANG S, HUANG W, ZHONG G. PIV-based experiments on density-induced flow in an estuarine navigation channel constricted by a groin[J]. Estuarine, Coastal and Shelf Science, 2022,275: 107994.
    [18] 林颖典, 韩东睿, 袁野平, 等. 双重障碍物对开闸式异重流运动特性的影响[J]. 同济大学学报(自然科学版), 2020,48(2): 317.LIN Yingdian, HAN Dongrui, YUAN Yeping, et al. Effects of two consecutive obstacles on gravity currents dynamics[J]. Journal of Tongji University (Natural Science), 2020,48(2): 317.
    [19] YAGHOUBI S, AFSHIN H, FIROOZABADI B, et al. Experimental investigation of the effect of inlet concentration on the behavior of turbidity currents in the presence of two consecutive obstacles[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2017,143(2): 4016018.
    [20] GU Z, CAO X, GU Q, et al. Exploring proper spacing threshold of non-submerged spur dikes with ipsilateral layout[J]. Water, 2020,12(1): 172.
    [21] HALLWORTH M A, HUPPERT H E, PHILLIPS J C, et al. Entrainment into two-dimensional and axisymmetric turbulent gravity currents[J]. Journal of Fluid Mechanics, 1996,308: 289.
    [22] WAN Y Y, ZHAO D Z. Observation of saltwater intrusion and ETM dynamics in a stably stratified estuary: the Yangtze estuary, China[J]. Environmental Monitoring and Assessment, 2017,189(2): 1.
    [23] WAN Y, GU F, WU H, et al. Hydrodynamic evolutions at the Yangtze estuary from 1998 to 2009[J]. Applied Ocean Research, 2014,47: 291.
    [24] MARTINO R, PATERSON A, PIVA M. Double-average mean flow and local turbulence intensity profiles from PIV measurements for an open channel flow with rigid vegetation[J]. Environmental Fluid Mechanics, 2012,12(1): 45.
    [25] 沈焕庭, 朱慧芳, 茅志昌. 长江河口环流及其对悬沙输移的影响[J]. 海洋与湖沼, 1986,17(1): 26.SHEN Huanting, ZHU Huifang, MAO Zhichang. Circulation of the Changjiang River estuary and its effect on the transport2of suspended sediment[J]. Oceanologia Et Limnologia Sinica, 1986,17(1): 26.
    [26] WU H, ZHU J. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang estuary[J]. Ocean Modelling, 2010,33(1): 33.
    [27] SIMPSON J H, BROWN J, MATTHEWS J, et al. Tidal straining, density currents, and stirring in the control of estuarine stratification[J]. Estuaries, 1990,13(2): 125.
    [28] SHEN Q, HUANG W R, QI D M. Integrated modeling of typhoon damrey's effects on sediment resuspension and transport in the north passage of Changjiang estuary, China[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2018,144(6): 4018015.
    [29] 黄晨. 长江口深水航道工程对盐水入侵的影响[J]. 水电能源科学, 2019,37(3): 29.HUANG Chen. Impacts of Deep Water Channel project in Yangtze River estuary on saltwater intrusion[J]. Water Resources and Power, 2019,37(3): 29.
    [30] PRITCHARD D W. Estuarine hydrography[M]. Elsevier, 1952.
    [31] 浦祥. 长江河口重力环流、潮汐应变、混合与层化[D].上海: 上海交通大学, 2017PU Xiang. Gravitational circulation, tidal straining, mixing and stratification in the Changjiang River estuary[D]. Shanghai: Shanghai Jiao Tong University, 2017.
    [32] 胡松, 朱建荣, 傅得健, 等. 河口环流和盐水入侵ⅱ—径流量和海平面上升的影响[J]. 青岛海洋大学学报(自然科学版), 2003,33(3): 337.HU Song, ZHU Jianrong, FU Dejian, et al. Estuarine circulation and saltwater intrusion ⅱ:impacts of river discharge and rise of sea level[J]. Periodical of Ocean University of China, 2003,33(3): 337.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄硕,黄文锐,刘曙光,娄厦,沈淇.河口航道双丁坝影响下异重流运动特性[J].同济大学学报(自然科学版),2023,51(5):728~737

复制
分享
文章指标
  • 点击次数:178
  • 下载次数: 432
  • HTML阅读次数: 99
  • 引用次数: 0
历史
  • 收稿日期:2022-08-30
  • 在线发布日期: 2023-05-30
文章二维码