车辆轨迹地图匹配异常成因辨识方法
作者:
作者单位:

1.同济大学 交通运输工程学院,上海 201804;2.浙江数智交院科技股份有限公司,浙江 杭州 310030

作者简介:

暨育雄(1978―),男,教授,博士生导师,工学博士,主要研究方向为交通全息感知与智能计算。 Email: yxji@tongji.edu.cn

通讯作者:

郑玉靖(1994―),男,博士后,工学博士,主要研究方向为交通系统数据挖掘。 Email : yujing_zheng@tongji.edu.cn

中图分类号:

U491

基金项目:

国家重点研发计划(2021YFB1600400);上海市级科技重大专项(2021SHZDZX0100)


Methodology of Identifying Causes of Abnormal Map Matching
Author:
Affiliation:

1.College of Transportation Engineering, Tongji University, Shanghai 201804,China;2.Zhejiang Institute of Communications Co. Ltd.,Hangzhou 310030 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆轨迹地图匹配异常指轨迹被匹配到不合理的地图路段,其主要成因可归纳为物理遮挡、地图路段缺失和复杂路网。针对这一现象,提出一种数据驱动的匹配异常轨迹段快速识别和成因归类方法。首先归纳不同成因导致的地图匹配异常数据特征,并构建表征指标;其次提出车辆轨迹分段方法,区分正常和异常的地图匹配轨迹段;进而建立基于随机森林的地图匹配异常轨迹段成因分类方法;最后通过上海市地图路网和出租车营运轨迹数据验证方法的有效性。验证表明,提出的方法准确率达93.5%,可有效辨识物理遮挡、社区路段缺失和复杂路网三种成因,同时具有较好的区域可迁移性。

    Abstract:

    Abnormal map matching refers to that partial vehicle trajectory is matched to a road segment incorrectly, typically caused by physical occlusion, road missing, and complex road configuration. This study proposes adata-driven methodology of identifying the causes ofabnormal map matching, which supports fast identification and classification of abnormal matching results. First, we summarize the statistical features of abnormal matching results with different causes and present criteria for representation. Second, we propose a segmentation algorithm to distinguish the abnormal results from the trajectory. Third, a classification algorithm is developed based on the random forest model. Finally, the proposed methodology is validated based on the real-world data of urban taxi operations in Shanghai. The case study reveals that the algorithms are effective in identifying the abnormal matching results caused by physical occlusion, local road missing, and complex road configuration, with a precision of 93.5%. In addition, the experiments show the high spatial suitability of the proposed methodology.

    参考文献
    相似文献
    引证文献
引用本文

暨育雄,陈丹璐,郑玉靖,沈煜.车辆轨迹地图匹配异常成因辨识方法[J].同济大学学报(自然科学版),2023,51(5):747~753

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-30
  • 出版日期:
文章二维码