深埋防护工程静动耦合作用下安全层厚度计算理论与方法
CSTR:
作者:
作者单位:

1.陆军工程大学 爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007;2.南京理工大学 机械工程学院,江苏 南京 210094

作者简介:

王明洋(1966—),男,中国工程院院士,教授,博士生导师,工学博士,主要研究方向为防灾减灾工程及防护工程。E-mail: wmyrf@163.com

通讯作者:

徐天涵(1995—),男,讲师,工学博士,主要研究方向为防灾减灾工程及防护工程。 E-mail: martinxu41@126.com

中图分类号:

O38

基金项目:

国家自然科学基金(52278419)


Calculation Theory and Method of Safety Layer Thickness of Deep Underground Protection Engineering Under Coupling Effect of Static and Dynamic Loading
Author:
Affiliation:

1.State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact ,Army Engineering University of PLA, Nanjing 210007, China;2.School of Mechanical Engineering,Nanjing 210094,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对外军钻地武器列装现状,通过地冲击能量耦合系数给出了等效封闭爆炸当量的计算方法。通过引入地冲击能量因子,提出了以能量因子为统一判据的破坏分区评判标准。利用经典弹塑性力学理论得到了围岩自承能力及围岩压力计算公式,揭示了围岩自承能力的本质是围岩剪切强度,且塑性区的扩展有利于自承能力提高。结合地冲击能量因子和动载作用下围岩压力,给出了地应力与地冲击耦合作用下深埋防护工程最小安全层厚度计算方法。计算结果表明,高地应力增大了地冲击的破坏效应,破坏区范围要大于不考虑地应力的情况。

    Abstract:

    In view of the current situation of the foreign military ground-penetrating weapons, the calculation method of equivalent contained explosion equivalent is given through the coupling factor of ground shock energy. By introducing the dimensionless energy factor, a criterion of damage zones based on the energy factor is proposed. Based on the classical elastic-plastic mechanics, the formulas for calculating the self-supporting capacity of surrounding rock and the pressure of surrounding rock are obtained. It is revealed that the essence of the self-supporting capacity of surrounding rock is the shear strength of surrounding rock, and the expansion of the plastic zone is conducive to the improvement of self-supporting capacity. Combined with the energy factor and the surrounding rock pressure under dynamic load, the calculation method for the minimum thickness of the safety protective layer of deep buried protection engineering under the coupling effect of ground shock and in-situ stress is given. The results show that the high in-situ stress increases the damage effect of the ground shock, and the range of the damage area is larger than that without considering the in-situ stress.

    参考文献
    [1] ADUSHKIN V V, SPIVAK A. Underground explosions[R]. Washington DC: Department of State, 2015.
    [2] US Army Engineer Waterways Experiment Station. Fundamentals of protective design for conventional weapons[R]. Washington DC: Department of the Army, 1986.
    [3] National Research Council. Committee on the effects of nuclear earth-penetrator and other weapons. Effects of nuclear earth-penetrator and other weapons[M]. Washington DC: National Academies Press, 2005.
    [4] 邓国强, 杨秀敏. 由封闭核爆试验结果研究钻地核爆效应方法探讨[J]. 防护工程, 2019, 41(6): 21.DENG Guoqiang, YANG Xiumin. Study on the method of assessing the burst effects of earth penetration nuclear weapon from closed nuclear burst experiment results[J]. Protective Engineering, 2019, 41(6): 21.
    [5] SHELTON T W, EHRGOTT J Q, MORAL R J, et al. Experimental and numerical investigation of the ground shock coupling factor for near-surface detonations[J]. Shock and Vibration, 2014, 2014: 1.
    [6] MU C, ZHOU H, MA H. Prediction method for ground shock parameters of explosion in concrete[J]. Construction and Building Materials, 2021, 291: 1
    [7] LARSON D B. Explosive energy coupling in geologic materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982, 19(4): 157.
    [8] LAMB F K, CALLEN B W, SULLIVAN J D. An approximate analytical model of shock waves from underground nuclear explosions[J]. Journal of Geophysical Research, 1992, 97(B1): 515.
    [9] HOLZER F. Measurements and calculations of peak shock-wave parameters from underground nuclear detonations[J]. Journal of Geophysical Research, 1965, 70(4): 893.
    [10] 何唐甫. 美国核爆炸岩土荷载研究概况及发展趋势[J]. 防护工程, 1987(4): 72.HE Tangfu. General situation and development trend of research on rock and soil load of nuclear explosion in the United States[J]. Protective Engineering, 1987(4): 72.
    [11] 庞伟宾, 李茂生, 吴祥云. 抗常规武器安全防护层厚度计算方法对比研究[J]. 防护工程, 2007, 29(2): 24.PANG Weibin, LI Maosheng, WU Xiangyun. Comparative study on calculation methods of safety protection layer thickness against conventional weapons[J]. Protective Engineering, 2007, 29(2): 24.
    [12] SHEMYAKIN E I. Two problems in rock mechanics arising out of the working of deep ore or coal deposits[J]. Soviet Mining Science, 1975, 11(6): 632.
    [13] NELSON R W. Low-yield earth-penetrating nuclear weapons[J]. Science & Global Security, 2002, 10(1): 1.
    [14] 何唐甫. 美国钻地武器研究发展状况及钻地计算分析[C]//第三届全国工程结构防护学术会议. 北京: 中国力学学会, 2000: 350-358.HE Tangfu. Research and development status of US ground-penetrating weapons and analysis of ground-penetrating calculation[C]// Proceedings of the Third National Conference on Engineering Structure Protection. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2000: 350-358.
    [15] 杨益, 李晓军, 王坤. B61?12型制导核弹研发动态及特点分析[J]. 防护工程, 2018, 40(2): 67.YANG Yi, LI Xiaojun, WANG Kun. The research development and characters analyzing of B61?12 guided nuclear bomb[J]. Protective Engineering, 2018, 40(2): 67.
    [16] 曾鹏, 陈军燕, 廖龙文, 等. 美国B61?12核炸弹撞击试验及其新军事能力分析[J]. 飞航导弹, 2020(3): 77.ZENG Peng, CHEN Junyan, LIAO Longwen, et al. Impact test of American B61?12 nuclear bomb and analysis of its new military capability[J]. Winged Missile, 2020(3): 77.
    [17] 乔登江. 地下核爆炸现象学概论[M]. 北京: 国防工业出版社, 2002.QIAO Dengjiang. Introduction to phenomenology of underground nuclear explosion[M]. Beijing: National Defense Industry Press, 2002.
    [18] 朗道. 弹性理论[M].曹富新, 译. 北京: 高等教育出版社, 2009.LANG Dao. Theory of elasticity[M]. Translated by CAO Fuxin. Beijing: High Education Press, 2009.
    [19] 王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究[J]. 岩石力学与工程学报, 2018,37(10): 2209.WANG Mingyang, CHEN Haoxiang, LI Jie, et al. Theoretical research on zonal disintegration of rock masses around deep tunnels and comparisons with in-situ observations[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(10): 2209.
    [20] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ:地下核爆炸诱发工程性地震效应的计算原理及应用[J]. 岩石力学与工程学报, 2019, 38(4): 695.WANG Mingyang, LI Jie. Nonlinear mechanics problems in rock explosion and shock.Part Ⅲ: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695.
    [21] 王明洋, 李杰, 李凯锐. 深部岩体非线性力学能量作用原理与应用[J]. 岩石力学与工程学报, 2015, 34(4): 659.WANG Mingyang, LI Jie, LI Kairui. A nonlinear mechanical energy theory in deep rock mass engineering and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 659.
    [22] KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. Part I[J]. Journal of Mining Science, 1999, 35(3): 216.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王明洋,徐天涵,蒋海明,高磊,熊自明,卢浩.深埋防护工程静动耦合作用下安全层厚度计算理论与方法[J].同济大学学报(自然科学版),2023,51(6):805~810

复制
分享
文章指标
  • 点击次数:293
  • 下载次数: 656
  • HTML阅读次数: 1529
  • 引用次数: 0
历史
  • 收稿日期:2023-03-06
  • 在线发布日期: 2023-06-28
文章二维码