分数阶黏弹性饱和地基与板的共同作用
作者:
作者单位:

1.同济大学 地下建筑与工程系,上海 200092;2.同济大学 岩土及地下工程教育部重点实验室,上海 200092

作者简介:

艾智勇(1966—),男,教授,博士生导师,工学博士,主要研究方向为岩土及地下工程。 E-mail:zhiyongai@tongji.edu.cn

通讯作者:

中图分类号:

TU443

基金项目:

国家自然科学基金(50578121, 41672275)


Interaction Between Fractional Viscoelastic Saturated Soils and Plates
Author:
Affiliation:

1.Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于层状分数阶黏弹性横观各向同性饱和地基的固结解答,采用边界元法与有限元法耦合的方法,探讨板与黏弹性饱和地基的共同作用。首先基于Mindlin中厚板理论,得到板的总刚度矩阵方程;随后引入分数阶黏弹性饱和地基的精细积分解答,获得地基柔度矩阵方程;最后利用板?土协调条件,得到黏弹性饱和地基与板共同作用的解答。与已有文献对比,验证了本文解的正确性,并讨论黏弹性饱和地基参数和地基加固深度等因素对筏板与地基共同作用的影响。

    Abstract:

    Based on the solution of multilayered fractional viscoelastic cross-anisotropic saturated soils, the boundary element-finite element coupling method is utilized to investigate the interaction between the plate and viscoelastic saturated soils. First, based on the Mindlin’s plate theory, the total stiffness matrix equation of the plate is obtained. Then, the precise integration solution of fractional viscoelastic saturated soils is introduced to obtain the flexibility matrix equation of soils. Finally, according to the coordination conditions of the plate-soil nodes, the solution of the interaction between the viscoelastic saturated soils and the plate is obtained. The proposed solution in this paper is verified by comparing with that of the literature. Moreover, the effects of the soil parameters and the reinforcement depth of soils on the time-dependent interaction between the raft and viscoelastic soils are analyzed.

    参考文献
    相似文献
    引证文献
引用本文

艾智勇,王大山,慕金晶.分数阶黏弹性饱和地基与板的共同作用[J].同济大学学报(自然科学版),2023,51(6):906~911

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-28
  • 出版日期:
文章二维码