考虑风光气电协同供能的冷热电联供系统多目标优化
CSTR:
作者:
作者单位:

同济大学 CIMS研究中心,上海 201804

作者简介:

戴毅茹(1972—),女,副研究员,工学博士,主要研究方向为能源综合优化利用。 E-mail: zlydyr@tongji.edu.cn

中图分类号:

TK01;N945.15

基金项目:

上海市自然科学基金(19ZR1461500)


Multi-Objective Optimization of Combined Cooling Heating and Power System Considering Photovoltaic-Wind-Gas-Power Collaborative Energy Supply
Author:
Affiliation:

CIMS Research Center, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建立以光伏发电、风电、燃气、网电多能源协同供能的冷热电联供系统。以独立供能冷热电联供系统为度量基准,构建由系统投资运行成本、一次能源利用、二氧化碳排放组成的多目标优化函数。针对全年冬季、夏季与过渡季的3种典型日的电热冷负荷需求,分析系统的容量配置以及“以电定热”“以热定电”的运行策略的协同优化。考虑优化问题的连续和组合优化的混合特性,模型求解采用多目标粒子群双层优化算法。采用正交试验分析关键因素对决策结果的影响作用。仿真结果表明,风光气电协同供能的冷热电联供系统相比独立供能系统,具有明显的经济、节能与环保的综合优势。

    Abstract:

    A kind of combined cooling heating and power (CCHP) system considering multi-energy collaborative supply consisting of photovoltaic power,wind power,natural gas, and grid power is developed in this paper. By using the independent CCHP system as the measurement benchmark, investment and operation cost, primary energy utilization, as well as carbon dioxide emission are incorporated to formulate multi- objective optimization function. For electrical, heating, and cooling loads on the three kinds of annual typical days such as winter, summer, and transitional seasons, the collaborative optimization study on device capacity sizing and operation strategy including FEL (following the electrical loads) and FTL (following the thermal loads) is conducted. Due to simultaneous existence of the continuous and combinatorial optimization, a bi-level optimization algorithm of multi-objective particle swarm is proposed. In addition, the orthogonal experimental analysis for the impact of critical system parameters on the optimal result is performed. The results show that compared with the independent CCHP system, the proposed CCHP system considering photovoltaic-wind-gas-power collaborative energy supply has a significantly better performance in economy, energy saving, and environmental protection.

    参考文献
    [1] ELANGO K, PRAKASH A, UMASANKAR L. Multiobjective optimization model for renewable energy sources and load demands uncertainty consideration for optimal design of hybrid combined cooling, heating and power systems[J]. Energy Research, 2022, 46(6): 7840. DOI: 10.1002/er.7684.
    [2] HERRANDO M, RAMOS A. Photovoltaic-thermal (PV-T) systems for combined cooling, heating and power in buildings: a review[J]. Energies, 2022, 15(9): 1. DOI: 10.3390/en15093021.
    [3] MAHDAVI N, MOJAVER P, KHALILARYA S. Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method[J]. Renewable Energy, 2022, 185: 506. DOI:10.1016/j.renene.2021.12.078.
    [4] MELO F M, MAGNANI F S, CARVALHO M. A decision-making method to choose optimal systems considering financial and environmental aspects: application in hybrid CCHP systems[J]. Energy, 2022, 250: 123816. DOI: 10.1016/j.energy.2022.123816.
    [5] 贾云辉,张峰.考虑分布式风电接入下的区域综合能源系统多元储能双层优化配置研究[J].可再生能源, 2019, 37(10): 1524. DOI: 10.13941/j.cnki.21-1469/tk.2019.10.017.JIA Yunhui, ZHANG Feng. A bi-level optimal configuration of multiple storage in regional integrated energy system with distribution wind power inclusion[J]. Renewable Energy Resources, 2019, 37(10):1524. DOI: 10.13941/j.cnki.21-1469/tk.2019.10.017.
    [6] NAMI H, ANVARI-MOGHADDAM A, NEMATI A. Modeling and analysis of a solar boosted biomass-driven combined cooling, heating and power plant for domestic applications[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101326. DOI: 10.1016/j.seta.2021.101326.
    [7] 严晓生,吴迪.CCHP系统优化配置及与传统热电联产系统的性能对比分析[J].中国测试,2020, 46(7): 159. DOI: 10.11857/j.issn.1674-5124.2020020037.YAN Xiaosheng, WU Di. Optimal configuration of CCHP system and performance comparison with traditional cogeneration system[J]. China Measurement & Test, 2020, 46(7): 159. DOI: 10.11857/j.issn.1674-5124.2020020037.
    [8] 黄景光,汪潭,林湘宁,等.面向风电消纳的区域综合能源系统鲁棒优化调度[J/OL].电测与仪表.[2021-11-17].http://kns.cnki.net/kcms/detail/23.1202.TH.20210526.1322.002.html. DOI: 10.19753/j.issn1001-1390.2021.12.016.HUANG Jingguang, WANG Tan, LIN Xiangning, et al. Robust optimal dispatch of regional integrated energy system for wind power consumption[J/OL]. Electrical Measurement & Instrumentation.[2021-11-17].http://kns.cnki.net/kcms/detail/23.1202.TH.20210526.1322.002.html. DOI: 10.19753/j.issn1001-1390.2021.12.016.
    [9] 熊文,刘育权,苏万煌,等.考虑多能互补的区域综合能源系统多种储能优化配置[J].电力自动化设备, 2019, 39(1): 118. DOI :10.16081/j.issn.1006-6047.2019.01.018.XIONG Wen, LIU Yuquan, SU Wanhuang, et al. Optimal configuration of multi-energy storage in regional integrated energy system considering multi-energy complementation[J]. Electric Power Automation Equipment, 2019, 39(1): 118. DOI :10.16081/j.issn.1006-6047.2019.01.018.
    [10] 张晶,范辉,张肖杰,等.考虑风险成本的跨区域综合能源系统调度优化模型[J].热力发电, 2021, 50(8): 121. DOI: 10.19666/j.rlfd.202104070.ZHANG Jing, FAN Hui, ZHANG Xiaojie, et al. Optimal model of cross-regional integrated energy system dispatching considering risk cost[J]. Thermal Power Generation, 2021, 50(8): 121. DOI: 10.19666/j.rlfd.202104070.
    [11] NAZIR M S, DIN S U, SHAH W A, et al. Optimal economic modelling of hybrid combined cooling, heating, and energy storage system based on gravitational search algorithm-random forest regression[J]. Complexity, 2021: 5539284. DOI: 10.1155/2021/5539284.
    [12] SONG Z, LIU T, LIN Q. Multi-objective optimization of a solar hybrid CCHP system based on different operation modes[J]. Energy, 2020, 206, 118125. DOI: 10.1016/j.energy.2020.118125.
    [13] REN F, WEI Z, ZHAI X. A review on the integration and optimization of distributed energy systems[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112440. DOI: 10.1016/j.rser.2022.112440.
    [14] 王磊,姜涛,宋丹,等.基于灵活热电比的区域综合能源系统多目标优化调度[J].电力系统保护与控制, 2021, 49(8): 151. DOI: 10.19783/j.cnki.pspc.201561.WANG Lei, JIANG Tao, SONG Dan, et al. Multi-objective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J]. Power System Protection and Control, 2021, 49(8): 151. DOI: 10.19783/j.cnki.pspc.201561.
    [15] AGHAEI A T, SARAY R K. Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: a case study in the dairy industry[J]. Energy, 2021, 229: 120788. DOI: 10.1016/j.energy.2021.120788.
    [16] REN F, WEI Z, ZHAI X. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types[J]. Energy, 2021, 215, 119096. DOI: 10.1016/j.energy.2020.119096.
    [17] 任洪波,周奥林,吴琼,等.基于不同运行模式的CCHP-ORC系统运行仿真与性能评估[J].热能动力工程, 2019, 34(10): 1. DOI: 10.16146/j.cnki.Rndlgc.2019.10.001.REN Hongbo, ZHOU Aolin, WU Qiong, et al. Operation simulation and performance evaluation of CCHP-ORC system based on different operation modes[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(10): 1. DOI: 10.16146/j.cnki.Rndlgc.2019.10.001.
    [18] 毕二朋,胡明辅,袁江,等.光伏系统设计中太阳辐射强度影响的分析[J].节能技术, 2012, 30(171): 45.BI Erpeng, HU Mingfu, YUAN Jiang, et al. Influence of solar radiation intensity in the design of PV system[J]. Energy Conservation Technology, 2012, 30(171): 45.
    [19] 杨茂,杨琼琼.风电机组风速?功率特性曲线建模研究综述[J].电力自动化设备, 2018, 38(2): 34. DOI: 10.16081/j.issn.1006-6047.2018.02.005.YANG Mao, YANG Qiongqiong. Review of modeling of wind speed-power characteristic curve for wind turbine[J]. Electric Power Automation Equipment, 2018, 38(2): 34. DOI: 10.16081/j.issn.1006-6047.2018.02.005.
    [20] WU Q, REN H, GAO W, et al. Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan[J]. Applied Thermal Engineering, 2014, 73: 660. DOI: 10.1016/j.applthermaleng.2014.08.020.
    [21] WANG J, WU J, ZHENG C. Analysis of tri-generation system in combined cooling and heating mode[J]. Energy and Buildings, 2014, 72: 353. DOI: 10.1016/j.enbuild.2013.12.053.
    [22] 张健,徐玉杰,李斌,等.分布式热电联产系统装机容量及运行策略分析[J].储能科学与技术, 2019, 8(1): 83. DOI: 10.12028/j.issn.2095-4239.2018.0190.ZHANG Jian, XU Yujie, LI Bin, et al. Analysis of installed capacity and operation strategy for distributed combined heating and power systems[J]. Energy Storage Science and Technology, 2019, 8(1): 83. DOI: 10.12028/j.issn.2095-4239.2018.0190.
    [23] GHERSI D E, AMOURA M, LOUBAR K, et al. Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy[J]. Energy, 2021, 219, 119574. DOI: 10.1016/j.energy.2020.119574.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴毅茹,王坚,曾依浦.考虑风光气电协同供能的冷热电联供系统多目标优化[J].同济大学学报(自然科学版),2023,51(6):963~972

复制
分享
文章指标
  • 点击次数:124
  • 下载次数: 394
  • HTML阅读次数: 78
  • 引用次数: 0
历史
  • 收稿日期:2021-12-09
  • 在线发布日期: 2023-06-28
文章二维码