遥感智能信息处理的发展及技术前景
CSTR:
作者:
作者单位:

1.中国科学院 地理科学与资源研究所,北京 100101;2.中国科学院 资源与环境信息系统国家重点实验室,北京 100101;3.中国科学院大学,北京 101408

作者简介:

杨晓梅(1970—),女,研究员,博士生导师,理学博士,主要研究方向为遥感影像地学理解与智能计算。 E-mail: yangxm@lreis.ac.cn

中图分类号:

P237

基金项目:

国家重点研发计划(2021YFB3900501)


Development and Technical Prospect of Remote Sensing Intelligent Information Processing
Author:
  • YANG Xiaomei 1,2,3

    YANG Xiaomei

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Zhihua 1,2,3

    WANG Zhihua

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yueming 1,2

    LIU Yueming

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Junyao 1,2,3

    ZHANG Junyao

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xiaoliang 1,2,3

    LIU Xiaoliang

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Bin 1,2,3

    LIU Bin

    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;2.State Key Laboratory of Resources and Environmental Information System, Chinese Academy of Sciences,Beijing 100101, China;3.University of Chinese Academy of Sciences, Beijing 101408, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    遥感信息提取技术虽不断推陈出新,但在智能化、精准实用性方面始终存在巨大的瓶颈问题,有必要围绕遥感智能计算和信息提取这个发展主题进行总结和讨论。从“机理—尺度—数据—智能”4个层面,逐步就遥感信息提取与定量反演路径的发展融合、基于像素和面向对象不同处理单元模式、时空谱数据融合、遥感解译的智能化因素四方面进行剖析,从而提出未来“数据获取知识”和“知识引导数据”双向驱动、遥感大数据和地学知识图谱相融合的遥感智能计算架构,尝试推动遥感科学从经典向现代化的跃迁。

    Abstract:

    Although the remote sensing information extraction technology is constantly being innovated, there are still huge bottlenecks in terms of intelligence, precision, and practicality. Therefore, it is necessary to conduct a comprehensive summary and discussion on the development topic of remote sensing intelligent computing and information extraction. From the four levels of “mechanism-scale-data-intelligence”, this paper gradually discusses the development and fusion of remote sensing information extraction and quantitative inversion paths, the different processing unit modes based on pixels and object-oriented, the spatial-temporal spectral data fusion, the intelligent factors of remote sensing interpretation. It proposes a future-oriented remote sensing intelligent computing architecture which is driven by two-way “data acquisition knowledge” and “knowledge-guided data”, and integrates remote sensing big data and geoscience knowledge maps, trying to promote the transition of remote sensing science from classics to modernization.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晓梅,王志华,刘岳明,张俊瑶,刘晓亮,刘彬.遥感智能信息处理的发展及技术前景[J].同济大学学报(自然科学版),2023,51(7):1025~1032

复制
相关视频

分享
文章指标
  • 点击次数:598
  • 下载次数: 1067
  • HTML阅读次数: 1444
  • 引用次数: 0
历史
  • 收稿日期:2023-05-03
  • 在线发布日期: 2023-07-25
文章二维码