基于流固耦合的含水合物地层井壁稳定非稳态解析模型
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.苏州科技大学 土木工程学院,江苏 苏州 215009;3.同济大学 航空航天与力学学院,上海 200092

作者简介:

黄佳佳(1991—),男,博士生,主要研究方向为含水合物地层井壁稳定分析。 E-mail: huangjiajia_civil@tongji.edu.cn

通讯作者:

王华宁(1975—),女,教授,博士生导师,工学博士,主要研究方向为岩土工程中的数值与解析方法。 E-mail: wanghn@tongji.edu.cn

中图分类号:

TE21

基金项目:

国家自然科学基金(12272274,51890911);同济大学土木工程防灾国家重点实验室自主课题(SLDRCE19-A-06);海南省重点研发计划(ZDYF2021SHFZ264);中国工程科技发展战略海南研究院重大咨询研究(21-HN-ZD-02-5)


Unsteady Analytical Investigation of Wellbore Stability in Methane Hydrate-Bearing Sediments Based on Fluid-Solid Coupling
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;3.School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对深海水合物地层钻井过程中的井壁稳定问题,考虑水合物分解、热传导、力场-渗流场全耦合作用,建立了过压和欠压钻井下渗流、温度、力场随时间和空间变化的非稳态解析模型。解析结果与相同条件下的数值结果吻合良好,且与力场-渗流半耦合解析结果进行了对比。基于解析模型对井壁稳定的关键参数如钻井液压力、水合物分解引起的地层弹性模量劣化程度等进行了分析,结果表明:①与半耦合分析结果相比,考虑体变对渗流的影响后,过(欠)压钻井时孔压减小(增大)、应力增大(减小),增量径向位移减小;②最危险位置在井壁处,过高或过低的钻井液压力均会导致井壁失稳,水合物分解引起的地层劣化将降低最安全钻井液压力;③水合物分解引起的地层刚度降低极易诱发井壁失稳。在通常条件下,过压钻井时分解域弹性模量降低50%即可导致井壁失稳。

    Abstract:

    In view of the wellbore stability of drilling in methane hydrate-bearing sediments, an analytical model in unsteady state is established considering hydrate dissociation, heat conduction, and fully fluid-solid coupling.And analytical solutions for seepage, temperature and mechanical fields with time and polar radius during overbalanced and underbalanced drilling are obtained. The analytical solutions are in good agreement with the numerical results under the same conditions and compared with the partial hydraulic-mechanical coupling results. The key parameters affecting wellbore stability, such as drilling fluid pressure, and the elastic modulus reduction caused by hydrate dissociation, are analyzed. The results show that compared with partial hydraulic-mechanical coupling results, if the influence of volume deformation of solid on seepage is considered, the pore pressure decreases (increases) while stresses increase (decrease) and radial displacement decreases during overbalanced (underbalanced) drilling. The most dangerous position for the formation is at the wellbore wall and a too high or too low drilling fluid pressure will lead to wellbore instability. The deterioration of formation in mechanical properties caused by hydrate dissociation will reduce the safest drilling fluid pressure. The reduction of formation stiffness caused by hydrate dissociation is very easy to induce wellbore instability and the wellbore instability can usually be caused by reducing the elastic modulus in the dissociated region by 50% during overbalanced drilling.

    参考文献
    [1] WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4):465.
    [2] 祝有海,庞守吉,王平康, 等.中国天然气水合物资源潜力及试开采进展[J].沉积与特提斯地质,2021,41(4):524.ZHU Youhai, PANG Shouji, WANG Pingkang, et al. A review of the resource potentials and test productions of natural gas hydrates in China[J]. Sedimentary Geology and Tethyan Geology,2021,41(4):524.
    [3] 付强, 周守为, 李清平. 天然气水合物资源勘探与试采技术研究现状与发展战略[J]. 中国工程科学, 2015(9):123.FU Qiang, ZHOU Shouwei, LI Qingping. Natural gas hydrate exploration and production technology research status and development strategy[J]. Engineering, 2015(9):123.
    [4] COLLETT T, BAHK J J, BAKER R, et al. Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2015, 60(2):319.
    [5] SUN X, LI Y H, LIU Y, et al. The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization[J]. Energy, 2019 (185): 837.
    [6] LI L J, LI X S, WANG L, et al. Investigating the interaction effects between reservoir deformation and hydrate dissociation in hydrate-bearing sediment by depressurization method[J]. Energies, 2021,14(3): 548.
    [7] 袁益龙, 许天福, 辛欣, 等.海洋天然气水合物降压开采地层井壁力学稳定性分析[J].力学学报,2020,52(2):544.YUAN Yilong, XU Tianfu, XIN Xin, et al. Mechanical stability analysis of strata and wellbore associated with gas production from oceanic hydrate-bearing sediments by depressurization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):544.
    [8] ZEYNALI M E. Mechanical and physico-chemical aspects of wellbore stability during drilling operations[J]. Journal of Petroleum Science and Engineering, 2012: 82(83): 120.
    [9] SUN J X, NING F L, LEI H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study[J]. Journal of Petroleum Science & Engineering, 2018, 17:345.
    [10] 谭琳,刘芳.水平井降压法和热激法水合物开采对海底边坡稳定性的影响[J].力学学报,2020,52(2):567.TAN Lin, LIU Fang. Submarine slope stability during depressurization and thermal stimulation hydrate production with horizontal wells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):567.
    [11] LI Y, CHENG Y, YAN C, et al. Mechanical study on the wellbore stability of horizontal wells in natural gas hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103359.
    [12] 刘乐乐,鲁晓兵,张旭辉. 天然气水合物分解引起多孔介质变形流固耦合研究[J].天然气地球科学,2013,24(5):1079.LIU Lele, LU Xiaobing, ZHANG Xuhui. Numerical study on porous media’s deformation due to natural gas hydrate dissociation considering fluid-solid coupling[J]. Natural Gas Geoscience, 2013,24(5):1079.
    [13] 丁立钦,王志乔,吕建国,等.基于围岩本体Mogi-Coulomb强度准则的层理性岩层斜井井壁稳定模型[J].岩石力学与工程学报, 2017, 36(3): 622.DING Liqin, WANG Zhiqiao, LV Jianguo, et al. A model for inclined borehole stability in bedding rocks based on Mogi-Coulomb criterion of rock matrix[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 622.
    [14] WU B S, ZHANG X, JEFFREY R G, et al. Analytical solutions for an extended overcore stress measurement method based on a thermo-poro-elastic analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 89:75.
    [15] WU B S, GAMAGE R P, ZHANG X, et al. An analytical thermo-poro-elasticity model for the mechanical responses of a wellbore and core during overcoring[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 98:141.
    [16] WANG H N, CHEN X P, JIANG M J, et al. Analytical investigation of wellbore stability during drilling in marine methane hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 68:102885.
    [17] 王华宁,郭振宇,高翔,等.含水合物地层井壁力学状态的弹塑性解析分析[J].同济大学学报(自然科学版),2020,48(12):1696.WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing sediments[J]. Journal of Tongji University (Natural Science), 2020,48(12):1696.
    [18] CHENG W, LU C H, NING F L, et al. A coupled thermal-hydraulic-mechanical model for the kinetic dissociation of methane hydrate in a depressurizing well[J]. Journal of Petroleum Science and Engineering, 2021, 207(11):109021.
    [19] JUNG J W, JANG J, SANTAMARINA J C, et al. Gas production from hydrate-bearing sediments: The role of fine particles[J]. Energy & Fuels, 2012, 26(1):480.
    [20] ADNOYB S,BELAYNEH M. Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids[J]. Journal of Petroleum Science & Engineering, 2004, 45(3): 179.
    [21] ROOSTAIE M, LEONENKO Y. Analytical modeling of methane hydrate dissociation under thermal stimulation[J]. Journal of Petroleum Science and Engineering, 2019, 184:106505.
    [22] HONG H, POOLADI-DARVISH M, BISHNOI P R. Analytical modelling of gas production from hydrates in porous media[J]. Journal of Canadian Petroleum Technology, 2003, 42(11):45.
    [23] GOEL N, SHAH S, WIGGINS M. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science & Engineering, 2001, 29(2):115.
    [24] COUSSY O. A general theory of thermoporoelastoplasticity for saturated porous materials[J]. Transport in Porous Media, 1989, 4(3):281.
    [25] WU B S, XI Z, JEFFREY R G, et al. A semi-analytic solution of a wellbore in a non-isothermal low-permeability porous medium under non-hydrostatic stresses[J]. International Journal of Solids and Structures, 2012, 49(13):1472.
    [26] GASSMANN F. Elastic waves through a peaking of spheres[J]. Geophysics, 1951, 16:673
    [27] ZHAO L, CAO C, YAO Q, et al. Gassmann consistency for different inclusion-based effective medium theories: Implications for elastic interactions and poroelasticity[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018328.
    [28] WILLIAMS D E. Thermal properties of soils[J]. Physics Teacher, 1991, 39(1): 37.
    [29] ZHANG C G, ZHAO J H, ZHANG Q H, et al. A new closed-form solution for circular openings modeled by the Unified Strength Theory and radius-dependent Young’s modulus[J]. Computers and Geotechnics, 2012, 42, 118.
    [30] BIOT M A. General theory of three dimensional consolidation[J] Journal of Applied Physics, 1941, 12 :155.
    [31] 李晓平. 地下油气渗流力学[M]. 2版. 北京:石油工业出版社, 2015.LI Xiaoping. Seepage mechanics for underground oil and gas[M]. 2nd ed. Beijing: Petroleum Industry Press, 2015.
    [32] DICKENS G R, QUINBY-HUNT M S. Methane hydrate stability in seawater[J]. Geophysical Research Letter, 1994, 21(19): 2115.
    [33] 刘晓强, 郭天魁, 曲占庆, 等. 水合物藏水力压裂储层改造可行性评价模型及应用[J]. 中南大学学报(自然科学版), 2022, 53(3): 1058.LIU Xiaoqiang, GUO Tiankui, QU Zhanqing, et al. Fracability evaluation model and application of hydraulic fracturing in natural gas hydrate reservoir[J]. Journal of Central South University(Science and Technology), 2022, 53(3): 1058.
    [34] 陈鹏. 基于Hoek-Brown准则的边坡等效Mohr-Coulomb参数估算[D].西安: 长安大学,2021.CHEN Peng. Estimation of equivalent Mohr-Coulomb parameters of slope based on Hoek-Brown criterion[D]. Xi’an: Chang’an University, 2021.
    [35] 孙金声,程远方,秦绪文,等.南海天然气水合物钻采机理与调控研究进展[J].中国科学基金,2021(6):940.SUN Jinsheng, CHENG Yuanfang, QIN Xuwen, et al. Research progress on natural gas hydrate drilling & production in the south china sea[J]. Bulletin of National Natural Science Foundation of China, 2021(6):940.
    [36] LI Y, CHENG Y, YAN C, et al. Mechanical study on the wellbore stability of horizontal wells in natural gas hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103359.
    [37] 张旭辉,鲁晓兵,王淑云,等.四氢呋喃水合物沉积物静动力学性质试验研究[J].岩土力学,2011,32(S1):303.ZHANG Xuhui, LU Xiaobing, WANG Shuyun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011,32(S1):303.
    [38] LIU W G, CHEN Y F, ZHU Y M, et al. Effects of different mining methods on the strength behavior of gas hydrate-bearing sediments[J]. Energy Procedia, 2014, 61, 547.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄佳佳,蒋明镜,王华宁.基于流固耦合的含水合物地层井壁稳定非稳态解析模型[J].同济大学学报(自然科学版),2023,51(7):1033~1043

复制
分享
文章指标
  • 点击次数:200
  • 下载次数: 497
  • HTML阅读次数: 112
  • 引用次数: 0
历史
  • 收稿日期:2022-03-05
  • 在线发布日期: 2023-07-25
文章二维码