透水鱼礁型潜堤内部流场及绕流特性模拟
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.上海海洋大学 海洋生态与环境学院,上海 201306

作者简介:

匡翠萍(1966—),女,教授,博士生导师,工学博士,主要研究方向为海岸工程和河口海岸水环境。 E-mail: cpkuang@tongji.edu.cn

通讯作者:

郑宇华(1993—),女,博士生,主要研究方向为河口海岸水环境。E-mail:yhzheng@tongji.edu.cn

中图分类号:

TV142;O357.5;S953.1

基金项目:

国家重点研发计划(2022YFC3106205);国家自然科学基金(41776098,41976159)


Simulation Methods of Inner Flow Field and Flow Characteristics Induced by Perforated Reef-Type Breakwater
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究透水鱼礁型潜堤近区绕流结构的形态和水动力特性,通过水槽试验和数值模拟对均匀来流作用下单体鱼礁型潜堤近区绕流结构展开精细化研究。水槽试验采用粒子图像测速技术获得礁体内外的三维湍流特征,内部湍流在时均流场中呈现出横向对称的连续涡旋结构,揭示了鱼礁型潜堤表面的穿孔设计增强礁体内外水交换的流动机制。基于有限体积法建立了三维水槽数学模型,采用标准k-ε、重整化群k-ε、可实现k-ε和大涡模拟4种典型湍流模型模拟鱼礁型潜堤绕流流场,并根据试验结果评估各湍流模型的计算精度和效率。数值结果表明:大涡模拟方法对Navior-Stokes方程直接求解大涡的优势使其对礁体内部的流动分离现象预测最为精确,但模型计算效率最低;可实现k-ε模型对礁体结构内外的流速和涡旋分布的模拟基本反映了实测结果,且计算效率最高,是在计算能力有限时最适用于模拟透水鱼礁型潜堤的湍流模型。

    Abstract:

    Based on flume experiment and numerical simulation, a refined study on 3D flow induced by a reef-type submerged breakwater was conduced to observe the turbulence performance and hydrodynamic characteristics in uniform inflow. Particle image velocimetry (PIV) is experimentally employed to successfully capture the three-dimensional vortex structure inside and outside the reef and a continuous vortex structure with transverse symmetry in the time-average flow field, which reveals the ambient water exchange mechanism promoted by perforation of reef-type breakwaters. Further, a 3D numerical model with the same specifications of the PIV experiment is built using the finite volume method. An evaluation of the most frequently typically used four turbulence models, i.e. standard k-ε, renormalization group k-ε, realizable k-ε and large eddy simulation (LES), on the flow field in vicinity of the perforated reef-type breakwater reef is presented. The results show that the inner flow separation predicted by LES is the most accurate due to the advantage of LES for directly solving the large eddy in the Navior-Stokes equation. However, the computational efficiency of the model is the lowest. The velocity and vortex structure near the reef block captured by realizable k-ε approximates the PIV flow visualization, and the computational efficiency is the highest, which is the most suitable turbulence model for the limited computed hardware equipment.

    参考文献
    [1] ARMONO H D, HALL K R. Wave transmission on submerged breakwaters made of hollow hemispherical shape artificial reefs[C]//Proceedings of 31st Annual conference of the Canadian Society for Civil Engineering. Moncton: [s.n.], 2003:312-322.
    [2] 韩业越, 殷蕊, 孙桂清, 等. 北戴河国家级海洋牧场示范区人工鱼礁建设效果评价[J]. 河北渔业, 2020 (4): 24. DOI: 10.3969/j.issn.1004-6755.2020.04.009.HAN Yeyue, YIN Rui, SUN Guiqing, et al. Effect evaluation of artificial reef construction in Beidaihe National Marine Ranch Demonstration Area [J]. Heibei Fishery, 2020 (4): 24. DOI: 10.3969/j.issn.1004-6755.2020.04.009.
    [3] OTEIZA P, ODATRCIL I, LAUDER G, et al. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish[J]. Nature, 2017, 547(7664): 445. DOI:10.1038/nature23014.
    [4] WU Z X, TWEEDLEY J R, LONERAGEN N R, et al. Artificial reefs can mimic natural habitats for fish and macroinvertebrates in temperate coastal waters of the Yellow Sea[J]. Ecological Engineering, 2019 (139): 105579. DOI: 10.1016/j.ecoleng.2019.08.009.
    [5] 吴建. 近海凸体保摊促淤的试验研究[D]. 青岛: 中国海洋大学, 2010.WU Jian. Experimental study on the artificial convex structure for beach protection and siltation promotion[D]. Qingdao: Ocean University of China, 2010.
    [6] LI J, ZHENG Y X, GONG P H, et al. Numerical simulation and PIV experimental study of the effect of flow fields around tube artificial reefs[J]. Ocean Engineering, 2017 (13): 96. DOI: 10.1016/j.oceaneng.2017.02.016
    [7] 王者也, 李爽. 基于大涡模拟与被动示踪物模型的人工鱼礁数值研究[J]. 海洋与湖沼, 2021, 52(6): 1376. DOI: 10.11693/hyhz20210300075.WANG Zheye, LI Shuang. Numerical simulation of cubic artificial reef under large eddy in passive scalar model[J]. Oceanologia ET Limnologia Sinica, 2021, 52 (6):1376. DOI: 10.11693/hyhz20210300075.
    [8] 崔勇,关长涛,万荣,等.布设间距对人工鱼礁流场效应影响的数值模拟[J]. 海洋湖沼通报, 2011 (2): 59. DOI: 10.13984/j.cnki.cn37-1141.2011.02.011.CUI Yong, GUAN Changtao, WAN Rong, et al. Numerical simulation on influence of disposal space on effects of flow field around artificial reefs[J]. Transactions of Oceanology and Limnology, 2011 (2): 59. DOI: 10.13984/j.cnki.cn37-1141.2011.02.011.
    [9] 胡聪, 毛海英, 王开睿. 圆筒型鱼礁体纵横布设间距下的水动力特性研究[J]. 海洋科学进展, 2022, 40(1):154. DOI: 10.12362/J.issn.1671-6647.2022.01.014.HU Cong, MAO Haiying, WANG Kairui. Hydrodynamic characteristics under different longitudinal and turbulence layout spacing of cylindrical reefs[J]. Advance in Marine Science, 2022, 40(1):154. DOI: 10.12362/J.issn.1671-6647.2022.01.014.
    [10] TANG Y L, LONG X Y, WANG X X, et al. Effect of reefs spacing on flow field around artificial reef based on the hydrogen bubble experiment[C]//Proceeding of 36th International Conference on Ocean, Offshore and Artic Engineering. Trondheim: American Society of Mechanical Engineers (ASME), 2017: 577-578.
    [11] MASLOV D, JOHNSON J, PREIRA E, et al. Experimental testing and CFD modelling for prototype design of innovative artificial reef structures[C]//Proceedings of OCEANS 2019. Marseille: Institute of Electrical and Electronics Engineers(IEEE), 2019: 1-7.
    [12] WILCOX D C. Reassessment of the scale-determining equation for advance turbulence models[J]. AIAA Journal, 1988, 26(11): 1299. DOI: 10.2514/3.10041.
    [13] KIM D H, JUNG S M, NA W B. Evaluation of turbulence models for estimating the wake region of artificial reefs using particle image velocimetry and computational fluid dynamics[J]. Ocean Engineering, 2021, 223(3): 108673. DOI: 10.1016/j.oceaneng.2021.108673.
    [14] 顾杰, 宋竑霖, 王佳元, 等. 近海人工岛及沙坝工程与潮流的响应特征研究[J]. 水动力学研究与进展, 2017, 32(2): 182. DOI:10.16076/j.cnki.cjhd.2017.02.007.GU Jie, SONG Honglin, WANG Jiayuan, et al. Study on responses of tidal currents to artificial island and sandbars in coastal waters[J]. Chinese Journal of Hydrodynamics, 2017, 32(2): 182. DOI:10.16076/j.cnki.cjhd.2017.02.007.
    [15] ADRIAN R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids, 2005, 39(2): 159. DOI: 10.1007/s00348-005-0991-7.
    [16] 庞运禧, 李芳成, 李尧. 同透空率下多孔人工鱼礁流场效应的三维数值模拟研究[J]. 水资源与水工程学报, 2017, 28(2): 133. DOI: 10.11705/j.issn.1672-643X.2017.02.23.PANG Yunxi, LI Fangcheng, LI Rao. Study on three-dimensional numerical simulation of flow field effect of multi-aperture artificial fish under identical penetration rate[J]. Journal of Water Resources & Water Engineering, 2017, 28(2): 133. DOI: 10.11705/j.issn.1672-643X.2017.02.23.
    [17] BIRON M P, RAMAURTHY S A, HAN S S. Three-dimensional numerical modeling of mixing at river confluences [J]. Journal of Hydraulic Engineering, 2004, 130(3): 243. DOI: 10.1061/(ASCE)0733-9429(2004)130:3(243).
    [18] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Energy, 1974, 3(2): 269. DOI: 10.1016/0045-7825(74)90029-2.
    [19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598. DOI: 10.2514/3.12149.
    [20] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory [J]. Journal of Scientific Computing, 1986, 1(1): 3. DOI: 10.1007/BF01061452.
    [21] SHIH T, LIOU W, SHABBIR A, et al. A new eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227. DOI: 10.1016/0045-7930(94)00032-T.
    [22] 张伟, 葛耀君. 方柱绕流粒子图像测速试验与数值模拟[J]. 同济大学学报(自然科学版), 2009, 37(7): 857. DOI: 10.3969/j.issn.0253-374x.2009.07.002.ZHANG Wei, GE Yaojun. Particle image velocimetry study and numerical simulation of turbulent near wake of square cylinder[J]. Journal of Tongji University (Natural Science), 2009, 37(7): 857. DOI: 10.3969/j.issn.0253-374x.2009.07.002.
    [23] 高学平, 陈昊, 孙博闻, 等. 侧式进/出水口数值模拟湍流模型比较研究[J]. 水利水电技术, 2020, 51(11): 109. DOI: 10.13928/j.cnki.wrahe.2020.11.013.GAO Xueping, CHEN Hao, SUN Bowen, et al. Comparative study on turbulence models for numerical simulation of lateral inlet/outlet[J]. Water Resources and Hydropower Engineering, 2020, 51(11): 109. DOI: 10.13928/j.cnki.wrahe.2020.11.013.
    [24] 陈善群, 王泽. 方柱绕流数值模拟方法的对比分析[J]. 三峡大学学报(自然科学版), 2008, 30(5): 18. DOI: 10.3969/j.issn.1672-948X.2008.05.005.CHEN Shanqun, WANG Ze. Numerical simulation methods of flow around square obstacle comparison[J]. Journal of China Three Gorges University (Natural Sciences), 2008, 30(5): 18. DOI: 10.3969/j.issn.1672-948X.2008.05.005.
    [25] 夏超, 单希壮, 杨志刚, 等. 不同湍流模型在列车外流场计算中的比较[J]. 同济大学学报(自然科学版), 2014, 42(11):1687. DOI: 10.11908/j.issn.0253-374x.2014.11.010.XIA Chao, SHAN Xizhuang, YANG Zhigang, et al. A comparative study of different turbulence models in computation of flow around simplified train[J]. Journal of Tongji University (Natural Science), 2014, 42(11):1687. DOI: 10.11908/j.issn.0253-374x.2014.11.010.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

匡翠萍,郑宇华,顾杰,韩雪健.透水鱼礁型潜堤内部流场及绕流特性模拟[J].同济大学学报(自然科学版),2023,51(7):1073~1084

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 449
  • HTML阅读次数: 132
  • 引用次数: 0
历史
  • 收稿日期:2022-05-27
  • 在线发布日期: 2023-07-25
文章二维码