基于分布式振动传感的车辆轴载感知方法
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 民航飞行区设施耐久与运行安全重点实验室,上海 201804;3.新加坡国立大学 土木与环境工程学院,新加坡 119260;4.苏黎世联邦理工学院 土木工程系,苏黎世 8093

作者简介:

边泽英(1996—),男,博士生,主要研究方向为智能铺面监测。E-mail:zybian@tongji.edu.cn

通讯作者:

赵鸿铎(1976—),男,教授,博士生导师,工学博士,主要研究方向为铺面智能化技术与智能铺面结构。 E-mail:hdzhao@tongji.edu.cn

中图分类号:

U416.221;U416.222

基金项目:

国家自然科学基金(51978520,52008309,52278457)


Vehicle Axle Load Sensing Based on Distributed Vibration Fiber Technology
Author:
  • BIAN Zeying 1,2,3

    BIAN Zeying

    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China;College of Civil and Environmental Engineering, National University of Singapore, Singapore 119260, Republic of Singapore
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Hongduo 1,2

    ZHAO Hongduo

    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • PENG Kedi 1,2

    PENG Kedi

    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZENG Mengyuan 1,2,4

    ZENG Mengyuan

    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China;Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Mu 1,2

    GUO Mu

    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, Shanghai 201804, China;3.College of Civil and Environmental Engineering, National University of Singapore, Singapore 119260, Republic of Singapore;4.Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    提出了基于分布式振动传感的车辆轴载感知方法。采用分布式光纤感知路面振动,建立光纤信号与路面振动位移映射关系及车辆轴载反演解析模型。利用足尺试验对所提车辆轴载反演解析模型进行拟合优度验证,并通过自然车辆称重试验验证所提车辆轴载感知算法有效性。结果表明:车辆轴载感知系统对单轴最大估计误差为0.98%,对车辆总重预估精度达到0.34%,且系统精度受车辆速度影响小,符合国家对于单轴2%、总重5%的精度标准。

    Abstract:

    This paper presents a method for sensing vehicle axle loads using distributed vibration fiber sensors to detect pavement vibrations. A mapping relationship between fiber optic signals and pavement vibration displacements is established, and analytical models for vehicle axle load inversion are proposed. Full-scale experiments are conducted to validate the accuracy of the proposed vehicle axle load inversion analytical models, while natural vehicle weighing tests are performed to verify the effectiveness of the vehicle axle load perception algorithm. The results demonstrate that the vehicle axle load sensing system, based on the inversion analytical models, achieves a maximum estimation error of 0.98% for individual axle loads and a total weight prediction accuracy of 0.34%. These accuracies meet the national standards of 2% for single axle loads and 5% for total weight. Furthermore, the system accuracy remains unaffected by variations in vehicle speed.

    参考文献
    [1] 裴建中. 道路工程学科前沿进展与道路交通系统的代际转换[J]. 中国公路学报, 2018, 31(11): 1.PEI Jianzhong. Progress of highway engineering and generation upgrading of highway transportation system[J]. China Journal of Highway and Transport, 2018, 31(11): 1.
    [2] 赵鸿铎, 朱兴一, 涂辉招, 等. 智能铺面的内涵与架构[J]. 同济大学学报(自然科学版), 2017, 45(8): 1131.ZHAO Hongduo, ZHU Xingyi, TU Huizhao, et al. Concept and framework of smart pavement[J]. Journal of Tongji University(Natural Science), 2017, 45(8): 1131.
    [3] TAN Y, LIANG Z, XU H, et al. Research on rutting deformation monitoring method based on intelligent aggregate[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22116.
    [4] ZHU X, ZHOU X, YE F, et al. Development and evaluation of cement/emulsified-asphalt based piezoelectric sensors for road weigh-in-motion system[J]. Smart Materials and Structures, 2021, 30(12): 125013.
    [5] HAN C, MA T, GU L, et al. Asphalt pavement health prediction based on improved transformer network[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4482.
    [6] ZHOU B, PEI J, ZHANG J, et al. Joint design and load transfer capacity analysis of photovoltaic/thermal integrated pavement unit[J]. Journal of Cleaner Production, 2022, 380: 135029.
    [7] HE L, ZHOU Z, LING F, et al. A coarse-grained molecular model for simulating self-healing of bitumen[J]. Applied Sciences, 2022, 12(20): 10360.
    [8] 孙立军. 铺面工程学[M]. 上海: 同济大学出版社, 2012.SUN Lijun. Pavement engineering[M]. Shanghai: Tongji University Press, 2012.
    [9] LV S, YUAN J, PENG X, et al. A structural design for semi-rigid base asphalt pavement based on modulus optimization[J]. Construction and Building Materials, 2021, 302(6):124216.
    [10] FERGUSON A C. Weighing vehicles in motion[J]. Measurement and Control, 1969, 2(12): T214.
    [11] ZHAO C, BIAN Z, ZHAO H, et al. Identification of moving load characteristic on pavement using FP cavity fiber optical technology[J]. Sustainability, 2022, 14(4): 2398.
    [12] KILBURN P. Weigh in motion report[R]. Calgary: Ministry of Transportation, 2008.
    [13] 曾孟源, 赵鸿铎, 边泽英, 等. 基于分布式光纤的混凝土路面振动场感知与解析[J]. 中国公路学报, 2022, 35(7): 78.ZENG Mengyuan, ZHAO Hongduo, BIAN Zeying, et al. Sensing and analysis of concrete pavement vibration field based on distributed optical fiber[J]. China Journal of Highway and Transport, 2022, 35(7): 78.
    [14] BAJWA R S. Wireless weigh-in-motion: using road vibrations to estimate truck weights[D]. Berkeley: University of California, 2013.
    [15] 张文斌. 公路车辆动态荷载测量及车型分类技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.ZHANG Wenbin. Research on dynamic loads measurement and vehicle classification on highway[D]. Harbin: Harbin Institute of Technology, 2009.
    [16] YE Z, XIONG H, WANG L. Collecting comprehensive traffic information using pavement vibration monitoring data[J]. Computer-Aided Civil and Infrastructure Engineering, 2020,35(2): 134.
    [17] YE Z, LU Y, WANG L. Investigating the pavement vibration response for roadway service condition evaluation[J]. Advances in Civil Engineering, 2018,2018:2714657.
    [18] HUANG S, LIN W, TSAI M, et al. Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators A: Physical, 2007, 135(2): 570.
    [19] DIOUF B M, CHE A, FENG S. Study of a space-time monitoring of high-speed railway underline structure using distributed optical vibration sensing technology[J]. Shock and Vibration, 2019, 12: 1.
    [20] ZHAN Z. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 2020, 91(1): 1.
    [21] ZHAO H, WU D, ZENG M, et al. A vibration-based vehicle classification system using distributed optical sensing technology[J]. Transportation Research Record, 2018, 2672(43): 12.
    [22] 曾孟源, 赵鸿铎, 吴荻非, 等. 基于振动感知的混凝土铺面板底脱空识别方法[J]. 中国公路学报, 2020, 33(3): 42.ZENG Mengyuan, ZHAO Hongduo, WU Difei, et al. Identification of cavities underneath concrete pavement based on pavement vibration[J]. China Journal of Highway and Transport, 2020, 33(3): 42.
    [23] ZENG M, WU D, ZHAO H, et al. Novel assessment method for support conditions of concrete pavement under traffic loads using distributed optical sensing technology[J]. Transportation Research Record, 2020, 2674(4): 42.
    [24] 陈曦. 基于Φ?OTDR的动态纳应变定量测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.CHEN Xi. Quantitative measurement of dynamic nano-strain based on Φ-OTDR[D]. Harbin: Harbin Institute of Technology, 2017.
    [25] ZENG M, ZHAO H, GAO D, et al. Reconstruction of vehicle-induced vibration on concrete pavement using distributed fiber optic[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24305.
    [26] RAJAGOPAL R. Large monitoring systems: data analysis, deployment and design [D]. Berkeley: University of California, 2009.
    [27] ZENG M, ZHAO H, WU D, et al. A vibration-based traffic monitoring system using distributed optical sensing technology[J]. Journal of Testing and Evaluation, 2019, 48(3): 1799.
    [28] LEIVA-VILLACORTA F, TIMM D. Falling weight deflectometer loading pulse duration and its effect on predicted pavement responses[R]. Washington DC: Transportation Research Board Committee, 2013.
    [29] 中华人民共和国国家市场监督管理总局. 动态公路车辆自动衡器: GB/T 21296―2020[S]. 北京: 中国质检出版社, 2020.State Administration for Market Regulation of the People’s Republic of China. Automatic instruments for weighing road vehicles in motion: GB/T 21296―2020[S]. Beijing: Quality Inspection Press of China, 2020.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

边泽英,赵鸿铎,彭科迪,曾孟源,郭牧.基于分布式振动传感的车辆轴载感知方法[J].同济大学学报(自然科学版),2023,51(8):1157~1167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-22
  • 在线发布日期: 2023-08-28
文章二维码