基于面波多道分析法的无砟轨道性能劣化反演方法
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804;3.河南工业大学 土木工程学院,河南 郑州 450001

作者简介:

胡 猛(1995—),男,博士生,主要研究方向为无砟轨道损伤检测。E-mail:humeng@tongji.edu.cn

通讯作者:

许玉德(1965—),男,教授,博士生导师,工学博士,主要研究方向为轨道管理及养修技术。 E-mail:xuyude@tongji.edu.cn

中图分类号:

U216.3

基金项目:

国家自然科学基金(51908197)


Inversion Method of Ballastless Track Performance Degradation Based on Multi-channel Analysis of Surface Waves
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China;3.College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了基于面波多道分析法的无砟轨道性能劣化反演方法。以无砟轨道理论面波频散曲线为基础,分析具有不同劣化程度的无砟轨道面波频散特性,构建无砟轨道性能劣化反演方法,并研究激振频率与检波器布设方式对反演效果的影响。结果表明:无砟轨道的面波频散曲线在低频与高频段分别取决于CA砂浆与轨道板的横波速度。为提高反演效果,建议将激振频率取为50 kHz,最小偏移距取大于或等于0.05 m,道间距取0.05 m,并尽可能增大检波器排列长度。

    Abstract:

    The inversion method of ballastless track performance degradation based on the multi-channel analysis of surface waves was proposed. Based on the theoretical surface wave dispersion curve, the dispersion characteristics of ballastless tracks with varying degrees of degradation were analyzed. A method for inverting the ballastless track performance degradation was constructed, and the effect of excitation frequency and detector placement mode on the inversion effect was studied. The results indicate that the shear wave velocity of CA mortar and track slabs respectively determines the surface wave dispersion curve of ballastless tracks at low and high frequencies. To enhance the inversion effect, the excitation frequency is recommended to be set at 50 kHz, the minimum offset distance should be greater than or equal to 0.05 m, and the channel spacing between tracks should be 0.05 m. Moreover, the length of the detector arrangement should be increased as much as possible.

    参考文献
    [1] 杨荣山, 胡猛, 孔晓钰, 等. 双块式无砟轨道枕边裂缝水力伤损特性[J]. 铁道学报, 2022, 44(2): 81.YANG Rongshan, HU Meng, KONG Xiaoyu, et al. Hydraulic damage characteristics of cracks adjacent to sleepers of twinblock ballastless track[J]. Journal of the China Railway Society, 2022, 44(2): 81.
    [2] 田秀淑. 基于弹性波的无砟轨道砂浆层脱空检测和识别方法研究[D]. 北京:北京交通大学, 2020.TIAN Xiushu. Detection and identification of mortar void in ballastless track based on elastic wave method[D]. Beijing: Beijing Jiaotong University, 2020.
    [3] 李再帏, 吴刚, 朱文发, 等. 基于Lamb波的CRTSⅡ型板式无砟轨道层间损伤检测方法[J]. 铁道学报, 2020, 42(12):7.LI Zaiwei, WU Gang, ZHU Wenfa, et al. CRTSⅡslab ballastless track interlayer damage detection method based on Lamb wave[J]. Journal of the China Railway Society, 2020, 42(12):7.
    [4] FAN Guopeng, ZHANG Haiyan, ZHU Wenfa, et al. Numerical and experimental research on identifying a delamination in ballastless slab track[J]. Materials, 2019, 12(11): 1788.
    [5] ZHU Wenfa, CHEN Xingjie, LI Zaiwei, et al. A SAFT method for the detection of void defect inside a ballastless track structure using ultrasonic array sensors[J]. Sensors, 2019, 19(21): 4677.
    [6] LI Zaiwei, ZHU Wenfa, MENG Xiangzhen, et al. Multi-layer imaging method for void defects in ballastless track using forward ray tracing with SAFT[J]. Measurement, 2021, 173: 108532.
    [7] ZHU Wenfa, SHAO Wei, CHEN Xingjie, et al. Detection method for cavity defects in ballastless track structures of high-speed railways based on air-coupled ultrasonic Lamb waves[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2019, 3: 143.
    [8] 吴刚, 李再帏, 朱文发, 等. 基于空耦超声导波的无砟轨道CA砂浆脱空检测方法[J]. 铁道科学与工程学报, 2019, 16(6): 1375.WU Gang, LI Zaiwei, ZHU Wenfa, et al. Ballastless track CA mortar void detection method based on air-coupled ultrasonic guided wave[J]. Journal of Railway Science and Engineering, 2019, 16(6): 1375.
    [9] 马昆林, 龙广成, 谢友均. 蒸养混凝土轨道板劣化机理研究[J].铁道学报, 2018, 40(8):116.MA Kunlin, LONG Guangcheng, XIE Youjun. Deterioration mechanism of steam-cured conerete track slab[J]. Journal of the China Railway Society, 2018, 40(8):116.
    [10] 徐浩, 林红松, 颜华, 等. CRTS Ⅰ型CA砂浆劣化对其疲劳寿命的影响分析[J]. 铁道工程学报, 2017, 34(12): 30.XU Hao, LIN Hongsong, YAN Hua, et al. Effect analysis of CRTS Ⅰ type CA mortar degradation on its fatigue life[J]. Journal of Railway Engineering Society, 2017, 34(12): 30.
    [11] 姜福豪, 李培明, 张翊孟,等. 多道面波频散分析在实际大炮数据中的应用[J]. 石油地球物理勘探, 2018, 53(1):9.JIANG Fuhao, LI Peiming, ZHANG Yimeng, et al. Frequency dispersion analysis of MASW in real seismic data[J]. Oil Geophysical Prospecting, 2018, 53(1):9.
    [12] SOCCO L V, STROBBIA C. Surface-wave method for near-surface characterization: a tutorial[J]. Near Surface Geophysics, 2004, 2(4): 165.
    [13] JAGANATHAN A P. Multichannel surface wave analysis of reinforced concrete pipe segments using longitudinal and circumferential waves induced by a point impact[J]. Journal of Applied Geophysics, 2019, 163: 40.
    [14] FAURE R M, LEFEBVRE G, KARRAY M, et al. The MASW method for testing tunnel lining integrity[C]//Proceedings of the 33rd ITA-AITES World Tunnel Congress, Underground Space,the 4th Dimension of Metropolises. London: Taylor & Francis Group, 2007: 1475-1480.
    [15] LEE Y H, OH T. The simple Lamb wave analysis to characterize concrete wide beams by the practical MASW test[J]. Materials, 2016, 9(6): 437.
    [16] SHAHSAVARI V. Applying the MASW method to estimate the thickness of superficial layers in concrete[M]. Ottawa: Library and Archives Canada, 2012.
    [17] ALZATE-DIAZ S P, POPOVICS J S. Application of MASW to characterize pavement top layers[C]// 7th International Symposium on Nondestructive Testing in Civil Engineering. Nantes: Laboratoire central des ponts et chaussées, 2009.
    [18] ZHU Jinying. Non-contact NDT of concrete structures using air coupled sensors[M]. Champaign County: University of Illinois at Urbana-Champaign, 2008.
    [19] 杨鸿凯, 车爱兰, 汤政, 等. 基于弹性波理论的高铁线下结构病害快速检测方法[J]. 上海交通大学学报, 2015, 49(7): 1010.YANG Hongkai, CHE Ailan, TANG Zheng, et al. Elastic-wave-based detection method for under line structure of high-speed railway[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 1010.
    [20] 夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版, 2015.XIA Jianghai. High frequency surface wave method[M]. Wuhan: China University of Geosciences, 2015.
    [21] 张雯皓. 基于压电陶瓷的双块式轨枕与道床界面损伤识别[D]. 成都: 西南交通大学, 2020.ZHANG Wenhao. Damage detection at the interfaces between double-block sleepers and slabs using PZT[D]. Chengdu: Southwest Jiaotong University, 2020.
    [22] 伍敦仕,孙成禹,林美言.基于互相关相移的主动源地震面波频散成像方法[J].地球物理学进展, 2017, 32(4): 1693.WU Dunshi, SUN Chengyu, LIN Meiyan. Activeseismic surface wave dispersion imaging method based on cross-correlation and phase-shifting[J]. Progress in Geophysics, 2017, 32(4): 1693.
    [23] KAUSEL E, RO?SSET J M. Stiffness matrices for layered soils[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 1743.
    [24] JAFARGANDOMI A, TAKENAKA H. Non-standard FDTD for elastic wave simulation: two-dimensional P-SV case[J]. Geophysical Journal International, 2009, 178(1): 282.
    [25] PAN Yudi, XIA Jianghai, GAO Lingli, et al. Calculation of Rayleigh-wave phase velocities due to models with a high-velocity surface layer[J]. Journal of Applied Geophysics, 2013, 96: 1.
    [26] SCHUBERT F, K?HLER B. Three-dimensional time domain modeling of ultrasonic wave propagation in concrete in explicit consideration of aggregates and porosity[J]. Journal of Computational Acoustics, 2001, 9(4): 1543.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡猛,许玉德,李少铮,薛志强,曹世豪.基于面波多道分析法的无砟轨道性能劣化反演方法[J].同济大学学报(自然科学版),2023,51(8):1267~1277

复制
分享
文章指标
  • 点击次数:96
  • 下载次数: 507
  • HTML阅读次数: 78
  • 引用次数: 0
历史
  • 收稿日期:2022-03-26
  • 在线发布日期: 2023-08-28
文章二维码