基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型
作者:
作者单位:

1.长安大学 公路学院,陕西 西安 710064;2.贝尔福‒蒙贝利亚技术大学 信息学院,贝尔福 90000;3.中铁十二局集团第一工程有限公司, 陕西 西安710038

作者简介:

苏恩杰(1996—),男,工学博士,主要研究方向为隧道及地下工程。 E-mail: suenjie@chd.edu.cn

通讯作者:

叶飞(1977—),男,教授,博士生导师,工学博士,主要研究方向为隧道及地下工程。 E-mail : xianyefei@126.com

中图分类号:

U455

基金项目:

国家自然科学基金(51678062,51878060),中铁十二局科研开发项目


Prediction Model of Shield Segment Floating Process During Construction Based on Convolutional Neural Networks and Long Short-Term Memory
Author:
Affiliation:

1.School of Highway, Chang’an University, Xi’an, 710064, China;2.School of Information, University of Technology of Belfort Montbéliard, Belfort 90000, France;3.The 1st Engineering Co., Ltd. of China Railway 12th Bureau Group, Xi’an 710038, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现施工期盾构管片上浮过程的智能预测,采用动力水准仪对施工期盾构管片上浮过程进行自动化监测并建立了基于卷积神经网络?长短期记忆(CNN-LSTM)深度学习算法的管片上浮过程智能预测模型。结果表明:管片上浮阶段呈现出“阶梯状”,即管片上浮主要发生在盾构掘进期间,且掘进状态的上浮量最大,占峰值的75.24 %~98.29 %;CNN-LSTM模型对施工期盾构管片上浮过程具有较好的预测效果,在训练集上的均方误差MSE、平均绝对误差MAE和决定系数R2分别为0.038 7、0.148 2和0.999 3,在测试集上为0.030 7、0.138 9和0.801 9;相较于反向传播(BP)模型,CNN-LSTM模型在训练集与测试集上的性能均有所提升,且测试集的提升更明显,最高可达89.71 %。研究结果可为盾构管片上浮的现场实测及预防处治提供新思路。

    Abstract:

    To realize the intelligent prediction of the floating process of shield segment during construction, the dynamic level was used to automatically monitor the floating process of shield segment, and an intelligent prediction model of segment floating process based on convolutional neural networks and long short-term memory (CNN-LSTM) deep learning algorithm was established. The results show that the floating stage of segment is in a shape of “ladder”, i.e., the floating of segment mainly occurs during shield tunneling. In addition, the floating amount in the heading state is the largest, accounting for 75.24 % to 98.29 % of the peak value. The mean square error (MSE), average absolute error (MAE) and determination coefficient R2on the training set are 0.038 7, 0.148 2, and 0.999 3 respectively, and 0.030 7, 0.138 9 and 0.801 9 on the test set. Compared with the back propagation (BP) model, the performance of the CNN-LSTM model in the training set and test set has been improved, and the improvement of the test set is more obvious, up to 89.71 %. The research results can provide a new idea for field measurement, prevention, and treatment of shield segment floating.

    参考文献
    相似文献
    引证文献
引用本文

苏恩杰,叶飞,何乔,任超,李思翰,张宏权.基于卷积神经网络-长短期记忆的施工期盾构管片上浮过程预测模型[J].同济大学学报(自然科学版),2023,51(9):1352~1361

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期:
文章二维码