轨道车辆运行平稳性评价算法一致性分析
CSTR:
作者:
作者单位:

同济大学 铁道与城市轨道交通研究院,上海 201804

作者简介:

张展飞(1997—),男,博士生,主要研究方向为铁道车辆系统动力学与控制。 E-mail: RW19T554573@163.com

通讯作者:

孙文静(1989—),女,助理教授,硕士生导师,工学博士,主要研究方向为轨道交通振动与噪声。 E-mail: sunwenjing@tongji.edu.cn

中图分类号:

U270.1

基金项目:

上海市青年科技英才扬帆计划(20YF1451100),上海市自然科学基金(21ZR1467100)


Analysis of Consistency of Ride Quality Evaluation Algorithm for Railway Vehicles
Author:
Affiliation:

Institute of Rail Transit, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    国内外轨道车辆运行时振动相关舒适性评价基于ISO2631-1、UIC513以及GB/T 5599标准,其中我国广泛采用的GB/T 5599-2019规范中的Sperling指标算法,将采样时间由1985版本的18~20 s缩短为与UIC513标准相同的5 s,引起相同测试数据的平稳性指标结果增大的问题。分析上述三种运行平稳性及舒适性指标算法,通过车辆线路实测数据与仿真数据相结合,研究不同算法关于采样时间长度的指标一致性及其机理,采用频率分辨率量化了非平方加权谱由于时频能量转换不对应导致的指标结果不稳定现象,基于此提出相应的平稳性指标一致性修正算法。结果表明:ISO2631-1与UIC513标准算法基于振动数据时频域转换的能量对应性,其计算结果与采样时间长度不相关,而GB/T 5599中采用的频域立方值算法因不满足能量一致性原则,在栅栏效应和能量泄露的影响下,缩短采样时间使得加速度频谱幅值增大,进而引起运行平稳性指标增大。提出的基于统一频率分辨率的平稳性指标一致性修正算法,并经动力学仿真数据验证有效,这为完善轨道车辆动力学分析与测试中振动舒适性的相关算法与评估限值制定提供理论依据。

    Abstract:

    The evaluation of ride comfort of railway vehicles related to vibration is mainly based on the standard of ISO 2631-1, UIC 513 and GB/T 5599. Among them, the Sperling index algorithm in the GB/T 5599—2019 specification widely used in China shortens the sampling time from 18–20 s in the 1985 version to 5 s, the same as the UIC513 standard, which results in an increase in the index result from the same test data. The algorithms of the three standards for ride quality or ride comfort were analyzed with the measured data and the simulation data to study the index consistency about the sampling time and the mechanism. Then the frequency resolution was used to quantify the instability of the index results caused by the weighted spectrum with non-square value due to the mismatch of time-frequency energy conversion. Based on this, the corresponding correction algorithm of ride quality consistency is proposed. The results show that the algorithms in the standards ISO 2631-1 and UIC 513 are based on the energy correspondence of time-frequency domain conversion of vibration data, whose ride comfort results are not related to the sampling time length. However, the cube value algorithm in the frequency domain adopted in GB/T 5599 does not meet the energy consistency principle. With the influence of the fence effect and energy leakage, shortening the sampling time increases the amplitude of the acceleration spectrum, which leads to an increase in the ride quality index in turn. The consistency correction algorithm of ride quality index based on the unified frequency resolution proposed in this paper was validated by the dynamic simulation data, providing a theoretical basis for improving the vibration comfort related algorithms and evaluation limits in vehicle dynamics analysis and testing.

    参考文献
    [1] SUN W, THOMPSON D, ZHOU J. The influence of vehicle–track dynamic coupling on the fatigue failure of coil springs within the primary suspension of metro vehicles[J]. Vehicle System Dynamics, 2020, 58(11): 1694.
    [2] XIE G, IWNICKI S D. A rail roughness growth model for a wheelset with non-steady, non-Hertzian contact[J]. Vehicle System Dynamics, 2010, 48(10): 1135.
    [3] 肖乾,罗佳文,周生通,等. 考虑弹性车体的轨道车辆转向架悬挂参数多目标优化设计[J]. 中国铁道科学, 2021, 42(2): 125.XIAO Qian, LUO Jiawen, ZHOU Shengtong, et al. Multiobjective optimization design for suspension parameters of rail vehicle bogie considering elastic carbody[J]. China Railway Science, 2021, 42(2): 125.
    [4] 周劲松,张伟,孙文静,等. 铁道车辆弹性车体动力吸振器减振分析[J]. 中国铁道科学, 2009, 30(3): 86.ZHOU Jingsong, ZHANG Wei, SUN Wenjing, et al. Vibration reduction analysis of the dynamic vibration absorber on the flexible carbody of railway vehicles[J]. China Railway Science, 2009, 30(3): 86.
    [5] 宫岛, 周劲松, 孙文静,等. 铁道车辆弹性车体垂向运行平稳性最优控制[J].同济大学学报(自然科学版), 2011, 39(3): 416.GONG Dao, ZHOU Jingsong, SUN Wenjing, et al. Vertical ride quality of flexible car body railway vehicles with optimal control[J]. Journal of Tongji University (Natural Science), 2011, 39(3): 416.
    [6] ZHOU J, GOODALL R, REN L, et al. Influences of car body vertical flexibility on ride quality of passenger railway vehicles[J]. Proceeding of the Institution of Mechanical Engineers. Part F: Journal of Rail and Rapid Transit, 2009,223(5):461.
    [7] 周劲松. 轨道车辆振动与控制[M]. 上海: 复旦大学出版社, 2020.ZHOU Jingsong. Vibration and control on railway vehicles[M]. Shanghai: Fudan University Press, 2020.
    [8] International Organization for Standardization. Evaluation of human exposure to whole-body vibration—part I. General requirements: ISO 2631-1:1997[S].[S.l.]:International Organization for Standardization,1997.
    [9] International Union of Railways. Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles: UIC 513R—1994[S].[S.l.]:International Union of Railways,1994.
    [10] SPERLING E. Verfahren zur beurteilung der laufeigenschafen von eisenbahnwesen[J]. Organ Fortschritte des Eisenbahnwesens, 1941, 12: 176.
    [11] SPERLING E, BETZHOLD C. Beitrag zur beurteilung des fahrkomforts in scheinenfahrzeugen[J]. Glasers Ann, 1956, 80:314.
    [12] 国家铁路局. 铁道车辆动力学性能评定和试验鉴定规范: GB/T 5599—1985[S]. 北京: 中国标准出版社, 1985.National Railway Administration of the People’s Republic of China. Railway vehicles-specification for evaluation the dynamic performance and accreditation test: GB/T 5599—1985[S]. Beijing: Standards Press of China, 1985.
    [13] 国家铁路局. 机车车辆动力学性能评定及试验规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.National Railway Administration of the People’s Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: Standards Press of China, 2019.
    [14] GARG V K. Dynamics of railway vehicle systems[M]. New York: Academic Press, 1984.
    [15] DENG C, ZHOU J, THOMPSON D, et al. Analysis of the consistency of the Sperling index for rail vehicles based on different algorithms[J]. Vehicle System Dynamics, 2021, 59(2): 313.
    [16] 姜威, 冯程程, 田凯. 不同计算时间下的平稳性指标对比研究[J]. 现代商贸工业, 2020, 41(24): 154.JIANG Wei, FENG Chengcheng, TIAN Kai, Comparative study on stationarity index under different calculation time[J]. Modern Business Trade Industry, 2020, 41(24): 154.
    [17] 戴源廷, 王文斌. 城市轨道交通车辆运行平稳性评价方法的探讨[C]// 第四届全国智慧城市与轨道交通学术会议暨轨道交通学组年会论文集. 北京: 中央民族大学出版社, 2017: 23-27.DAI Yuanting, WANG Wenbin, Discussion on evaluation method of running stability of urban rail transit vehicles[C]// The 4th National Smart City and Rail Transit Academic Conference and Annual Meeting of Rail Transit Group. Beijing: China Minzu University Press, 2017: 23-27.
    [18] 戴焕云. 平稳性指标W和加权加速度Aw不能相互换算的分析[J]. 铁道技术监督, 2008. 263(9):1.DAI Huanyun. Analysis of stability index W and weighted acceleration index Aw could not be converted mutually[J]. Railway Quality Control, 2008. 263(9):1.
    [19] 住房和城乡建设部. 城市轨道交通车辆组装后的检查与试验规则: GB/T 14894—2005[S]. 北京: 中国标准出版社, 2005.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Rules for inspecting and testing of urban rail transit vehicles after completion of construction: GB/T 14894—2005[S]. Beijing: Standards Press of China, 2005.
    [20] JIANG Y, CHEN B K, THOMPSON C. A comparison study of ride comfort indices between sperling’s method and EN 12299[J]. International Journal of Rail Transportation, 2019, 7(4): 279.
    [21] 丁康, 谢明, 杨志坚. 离散频谱分析校正理论与技术[M]. 北京: 科学出版社, 2008.DING Kang, XIE Ming, YANG Zhijian. Theory and technology of discrete spectrum correction[M]. Beijing: Science Press, 2008.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张展飞,周劲松,孙文静,宫岛,王腾飞.轨道车辆运行平稳性评价算法一致性分析[J].同济大学学报(自然科学版),2023,51(9):1442~1449

复制
分享
文章指标
  • 点击次数:589
  • 下载次数: 1017
  • HTML阅读次数: 156
  • 引用次数: 0
历史
  • 收稿日期:2022-04-02
  • 在线发布日期: 2023-09-27
文章二维码