基于多层感知机与无网格策略的三维空间声源识别
作者:
作者单位:

1.同济大学 汽车学院,上海 201804;2.同济大学 上海地面交通工具风洞中心,上海 201804;3.同济大学 上海地面交通工具空气动力与热环境模拟重点实验室,上海 201804

作者简介:

贺银芝(1972—),女,工学博士,副教授,主要研究方向为气动声学、车辆噪声与振动控制。 E-mail: heyinzhi@tongji.edu.cn

通讯作者:

中图分类号:

U467.493

基金项目:

国家重点研发计划(2022YFE0208000);国家自然科学基金(51575394);中央高校基本科研业务费专项资金


3D Sound Source Identification Based on Multi-Layer Perceptron and Grid-Free Strategy
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;3.Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以往波束形成算法将潜在声源区域划分成若干网格,所有的声源被映射到一个个网格点上,会导致错误的声源定位与强度计算,并且计算精度与效率受网格间距大小的影响。采用多层感知机神经网络以及无网格策略,能够提高声源识别的空间分辨率与计算效率。通过使用单个平面麦克风阵列对三维等强度双点声源进行识别定位,发现相较于传统互谱算法,多层感知机能够改善平面阵列在深度方向上较差的空间分辨率性能。此外,在定位误差方面,多层感知机优于传统互谱算法,同时声源识别的强度误差有所降低。在低频时,多层感知机性能优于波束形成算法,可用来弥补波束形成算法空间分辨率性能不佳的局限性。

    Abstract:

    In the past, the potential sound source area was divided into mounts of grids according to the beamforming algorithm, and all the sound sources were mapped into the grid points, which would lead to an incorrect sound source localization and intensity calculation, and the calculation accuracy and efficiency were affected by the size of grid spacing. In this paper, the multi-layer perceptron neural network and grid-free strategy are used to improve the spatial resolution and computational efficiency of sound source identification. Compared with the conventional cross-spectrum algorithm, with the algorithm of multi-layer perception, the spatial resolution can be improved in the depth direction as a planar array was applied to identify and localize two- point sound sources with the same intensity. In addition, multi-layer perceptron is superior to the conventional cross-spectrum algorithm in positioning error. Meanwhile, the intensity error of sound source identification is reduced. Moreover, multi-layer perceptron is superior to the beamforming algorithm at a low frequency range, which can be used as compensation for the poor spatial resolution of beamforming algorithm at this range.

    参考文献
    相似文献
    引证文献
引用本文

贺银芝,杨现晖,刘永铭,杨志刚,庞加斌.基于多层感知机与无网格策略的三维空间声源识别[J].同济大学学报(自然科学版),2023,51(9):1450~1459

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期:
文章二维码