基于多层感知机与无网格策略的三维空间声源识别
CSTR:
作者:
作者单位:

1.同济大学 汽车学院,上海 201804;2.同济大学 上海地面交通工具风洞中心,上海 201804;3.同济大学 上海地面交通工具空气动力与热环境模拟重点实验室,上海 201804

作者简介:

贺银芝(1972—),女,工学博士,副教授,主要研究方向为气动声学、车辆噪声与振动控制。 E-mail: heyinzhi@tongji.edu.cn

中图分类号:

U467.493

基金项目:

国家重点研发计划(2022YFE0208000);国家自然科学基金(51575394);中央高校基本科研业务费专项资金


3D Sound Source Identification Based on Multi-Layer Perceptron and Grid-Free Strategy
Author:
  • HE Yinzhi 1,2,3

    HE Yinzhi

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Xianhui 1,2,3

    YANG Xianhui

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yongming 1,2,3

    LIU Yongming

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Zhigang 1,2,3

    YANG Zhigang

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • PANG Jiabin 1,2,3

    PANG Jiabin

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;3.Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以往波束形成算法将潜在声源区域划分成若干网格,所有的声源被映射到一个个网格点上,会导致错误的声源定位与强度计算,并且计算精度与效率受网格间距大小的影响。采用多层感知机神经网络以及无网格策略,能够提高声源识别的空间分辨率与计算效率。通过使用单个平面麦克风阵列对三维等强度双点声源进行识别定位,发现相较于传统互谱算法,多层感知机能够改善平面阵列在深度方向上较差的空间分辨率性能。此外,在定位误差方面,多层感知机优于传统互谱算法,同时声源识别的强度误差有所降低。在低频时,多层感知机性能优于波束形成算法,可用来弥补波束形成算法空间分辨率性能不佳的局限性。

    Abstract:

    In the past, the potential sound source area was divided into mounts of grids according to the beamforming algorithm, and all the sound sources were mapped into the grid points, which would lead to an incorrect sound source localization and intensity calculation, and the calculation accuracy and efficiency were affected by the size of grid spacing. In this paper, the multi-layer perceptron neural network and grid-free strategy are used to improve the spatial resolution and computational efficiency of sound source identification. Compared with the conventional cross-spectrum algorithm, with the algorithm of multi-layer perception, the spatial resolution can be improved in the depth direction as a planar array was applied to identify and localize two- point sound sources with the same intensity. In addition, multi-layer perceptron is superior to the conventional cross-spectrum algorithm in positioning error. Meanwhile, the intensity error of sound source identification is reduced. Moreover, multi-layer perceptron is superior to the beamforming algorithm at a low frequency range, which can be used as compensation for the poor spatial resolution of beamforming algorithm at this range.

    参考文献
    [1] DOUGHERTY R, STOKER R. Sidelobe suppression for phased array aeroacoustic measurements[C] // 4th AIAA/CEAS Aeroacoustics Conference. Toulouse: American Institute of Aeronautics and Astronautics Inc, AIAA, 1998: 235-245.
    [2] SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4): 357.
    [3] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4/5): 856.
    [4] MA W, LIU X. Phased microphone array for sound source localization with deep learning[J]. Aerospace Systems, 2019, 2(2): 71.
    [5] 宋章辰, 郭昊, 刘沛清. 基于卷积神经网络算法的麦克风阵列研究[C] // 中国力学大会论文集. 杭州:CCTAM, 2019: 549-561.SONG Zhangchen, GUO Hao, LIU Peiqing. Research on microphone array based on convolutional neural network algorithm [C] // Proceedings of Chinese Congress of Theoretical and Applied Mechanics. Hangzhou: CCTAM, 2019: 549-561.
    [6] CASTELLINI P, GIULIETTI N, FALCIONELLI N, et al. A neural network based approach to gridless sound source identification[C] // Proceedings of the BeBeC. Berlin: [s.n.], 2020: 2-5.
    [7] CASTELLINI P, GIULIETTI N, FALCIONELLI N, et al. A neural network based microphone array approach to gridless noise source localization[J]. Applied Acoustics, 2021, 177: 107947.
    [8] KUJAWSKI A, HEROLD G, SARRADJ E. A deep learning method for grid-free localization and quantification of sound sources[J]. The Journal of the Acoustical Society of America, 2019, 146(3): 225.
    [9] 王言彬, 徐长秋, 毛富哲. 基于深度学习的声源无网格定位及量化方法[J]. 电子测量技术, 2021, 44(16): 57.WANG Yanbin, XU Changqiu, MAO Fuzhe. Gridless localization and quantification method of sound source based on deep learning [J]. Electronic Measurement Technology, 2021, 44(16): 57.
    [10] SARRADJ E. Three-dimensional acoustic source mapping with different beamforming steering vector formulations[J]. Advances in Acoustics and Vibration, 2012, 5(6):49.
    [11] BROOKS T, HUMPHREYS W. Three-dimensional applications of DAMAS methodology for aeroacoustic noise source definition [C] // 11th AIAA/CEAS Aeroacoustics Conference. Monterey: American Institute of Aeronautics and Astronautics Inc. [S.l.]:AIAA, 2005: 2014-2035.
    [12] MEYER A, D?BLER D. Noise source localization within a car interior using 3D-microphone arrays[C] // Proceedings of the BeBeC. Berlin:[s.n.], 2006: 4-6.
    [13] MAFFEI M, BIANCO A. Improvements of the beamforming technique in pininfarina full scale wind tunnel by using a 3D scanning system[J]. SAE International Journal of Materials and Manufacturing, 2009, 1(1): 154.
    [14] PADOIS T, ROBIN O, BERRY A. 3D Source localization in a closed wind-tunnel using microphone arrays[C] // 19th AIAA/CEAS Aeroacoustics Conference. Berlin: AIAA International, 2013: 203-216.
    [15] PORTEOUS R, PRIME Z, VALEAU V, Three-dimensional beamforming of aeroacoustic sources[C] // INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Melbourne: Australian Acoustical Society, 2014, 249(6): 2322-2330.
    [16] D?BLER D, OCKER J, PUHLE C. On 3D–beamforming in the wind tunnel[C] // Proceedings of the BeBeC. Berlin: [s.n.], 2016: 1-7.
    [17] OCKER J, PAUL L. Laser geometry detection in the Porsche wind tunnel — Base for 3D beamforming and deformation measurements [C] // 18th Internationales Stuttgarter Symposium. Stuttgart: [s.n.], 2018: 935-948.
    [18] PORTEOUS R, PRIME Z, DOOLAN C J, et al. Three-dimensional beamforming of dipolar aeroacoustic sources[J]. Journal of Sound and Vibration, 2015, 355: 117.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺银芝,杨现晖,刘永铭,杨志刚,庞加斌.基于多层感知机与无网格策略的三维空间声源识别[J].同济大学学报(自然科学版),2023,51(9):1450~1459

复制
分享
文章指标
  • 点击次数:277
  • 下载次数: 628
  • HTML阅读次数: 82
  • 引用次数: 0
历史
  • 收稿日期:2022-05-03
  • 在线发布日期: 2023-09-27
文章二维码