双导堤工程下潮汐汊道与海岸潟湖地貌稳定性
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.中交第一航务工程局有限公司,天津 300461;3.中交天津港湾工程研究院有限公司,天津 300222

作者简介:

匡翠萍(1966—),女,教授,博士生导师,工学博士,主要研究方向为海岸工程。 E-mail: cpkuang@tongji.edu.cn

通讯作者:

范家栋(1995—),男,博士生,主要研究方向为海岸工程。E-mail: jaydenf@tongji.edu.cn

中图分类号:

P75

基金项目:

国家自然科学基金(41976159)


Geomorphological Stabilities of Tidal Inlet and Coastal Lagoon Under Influence of a Double-guide-dike Project
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.CCCC First Harbor Engineering Co. Ltd., Tianjin 300461, China;3.Tianjin Port Engineering Institute Co., Ltd. of CCCC First Harbor Engineering Co. Ltd., Tianjin 300222, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    以渤海湾沿岸具有双导堤工程的单一潮汐汊道的华北最大海岸潟湖—七里海潟湖为原型建立理想模型,通过设置包括临界侵蚀应力、临界淤积应力、泥沙沉速、初始床面高程和径流量等影响潟湖地貌演变的相关参数,得到理想模型达到稳定状态后的纳潮量P和潮汐汊道断面最大流量Qm。分别建立其与潮汐汊道断面面积A的相关关系式以表征潮汐汊道稳定性。比较分析发现在表征潮汐汊道稳定性方面,Qm?A关系较P?A关系的拟合效果更佳。分别利用Qm?A关系以及泥沙净冲淤量计算得到潮汐汊道和潟湖稳定所需时长,对比结果表明潟湖明显滞后于潮汐汊道达到稳定状态,临界侵蚀应力对潮汐汊道稳定性影响更大,而临界淤积应力、泥沙沉速和初始床面高程对潟湖稳定性影响尤为显著,径流量对潟湖和潮汐汊道稳定性的影响相当。

    Abstract:

    To investigate the stability of a coastal lagoon system with a single tidal inlet under the influence of a double-guide-dike project, an ideal model was established based on the largest costal lagoon with a single tidal inlet in North China, Qilihai Lagoon. Scenarios were set with different variables, including critical erosion shear stress, critical deposition shear stress, sediment settling velocity, initial bed elevation and runoff. The tidal prism P, the maximum discharge Qm, and the cross-section area A of the tidal inlet were collected when the ideal model attains the equilibrium state in each case, and then equations about Qm-A relationship and P-A relationship are established to indicate the stability of the tidal inlet. It illustrates that the Qm-A relationship is more effective than the P-A relationship to show the stability of the tidal inlet. Then, both Qm-A relationship and net erosion or deposition amount are utilized to calculate the time costs for the tidal inlet and the lagoon to attain the equilibrium state in each case. It indicates that the lagoon costs more time to attain the stability than the tidal inlet; critical erosion shear stress causes more effect on the tidal inlet; the lagoon is more sensitive to critical deposition shear stress, sediment settling velocity and initial bed elevation; runoff brings about the similar influence on the stability of the lagoon and the tidal inlet.

    参考文献
    [1] 孙伟富. 我国海岸澙湖遥感监测与典型澙湖分析[D]. 青岛: 中国海洋大学, 2013.SUN Weifu. Monitoring and analyzing the lagoon dynamics in China using remote sensing imagery[D]. Qingdao: Ocean University of China, 2013.
    [2] 孙伟富, 张杰, 马毅, 等. 1979―2010年我国大陆海岸潟湖变迁的多时相遥感分析[J]. 海洋学报, 2015, 37(3): 54.SUN Weifu, ZHANG Jie, MA Yi, et al. Investigation of the evolution of China coastal lagoons from 1979 to 2010 using multi-temporal satellite data[J]. Acta Oceanologica Sinica, 2015, 37(3): 54.
    [3] M??IN? J, FERRARIN C, VAI?IūT? D, et al. Sediment transport mechanisms in a lagoon with high river discharge and sediment loading[J]. Water, 2019, 11(10): 1970.
    [4] SHALBY A, ELSHEMY M, ZEIDAN B A. Modeling of climate change impacts on Lake Burullus, coastal lagoon(Egypt)[J]. International Journal of Sediment Research,2019:DOI: 10.1016/j.ijsrc.2019.12.006.
    [5] 任美锷, 张忍顺. 潮汐汊道的若干问题[J]. 海洋学报(中文版), 1984(3): 352.REN Mei’e, ZHANG Renshun. Questions about tidal inlets[J]. Acta Oceanologica Sinica, 1984(3): 352.
    [6] MAICU F, ABDELLAOUI B, BAJO M, et al. Modelling the water dynamics of a tidal lagoon: The impact of human intervention in the Nador Lagoon (Morocco)[J]. Continental Shelf Research, 2021, 228. DOI: 10.1016/J.CSR.2021.104535.
    [7] PETTI M, BOSA S, PASCOLO S, et al. An integrated approach to study the morphodynamics of the Lignano tidal inlet[J]. Journal of Marine Science and Engineering, 2020, 8(2): 77.
    [8] PETTI M, BOSA S, PASCOLO S, et al. Marano and Grado lagoon:narrowing of the Lignano inlet[C]//IOP Conference Series: Materials Science and Engineering. [S.l.]:IOP Publishing, 2019, 603(3): 1–10.
    [9] O'BRIEN M P. Estuary tidal prisms related to entrance areas[J]. Civil Engineering. 1931, 1931, 1(8):738.
    [10] PETTI M, PASCOLO S, BOSA S, et al. On the tidal prism: the roles of basin extension, bottom friction and inlet cross-section[J]. Journal of Marine Science and Engineering, 2021, 9(1): 88.
    [11] 张乔民. 华南海岸潮汐汊道P-A关系的分析[J]. 热带海洋学报, 1987(2): 12ZHANG Qiaomin. On P-A relationsips of tidal inlets along South China coast[J]. Tropic Oceanology, 1987(2): 12
    [12] 高抒. 东海沿岸潮汐汊道的P-A关系[J]. 海洋科学, 1988(1): 17GAO Shu. P-A relationsips of tidal inlets along the East China Sea coast[J]. Marine Sciences, 1988(1): 17.
    [13] 张忍顺. 黄渤海沿岸潮汐汊道的P-A关系[J]. 海洋工程, 1995, 13(2): 56.ZHANG Renshun. Tidal prism-throat area of tidal inlets along Yellow Sea and Bohai Sea coast[J].The Ocean Engineering, 1995, 13(2): 56.
    [14] BRUUN P. Stability of tidal inlets[M]. Amsterdam:Elsevier, 1978.
    [15] AUBREY D G,WEISHAR L. Hydrodynamics and sediment dynamics of tidal inlets[M]. NewYork:Springer‐Verlag, 1988.
    [16] FRIEDRICHS C T, AUBREY D G. Uniform bottom shear stress and equilibrium hyposometry of intertidal flats[M]. Washington D C:American Geophysical Union (AGU), 1996.
    [17] XU F, COCO G, ZHOU Z, et al. A numerical study of equilibrium states in tidal network morphodynamics[J]. Ocean Dynamics. 2017, 67(12): 1593.
    [18] KUANG C, CONG X, DONG Z, et al. Impact of anthropogenic activities and sea level rise on a lagoon system: Model and field observations[J]. Journal of Marine Science and Engineering. 2021, 9(12):1393.
    [19] XIE D, GAO S, WANG Y. Morphodynamic modelling of open-sea tidal channels eroded into a sandy seabed, with reference to the channel systems on the China coast[J]. Geo-marine Letters. 2008, 28(4): 255.
    [20] CONG X, KUANG C, DONG Z, et al. Responses of morphological stability to tidal inlet width of a shallow coastal lagoon[C]//The Fourteenth ISOPE Pacific/Asia Offshore Mechanics Symposium. [S.l.]:International Society of Offshore and Polar Engineers, 2020: 136-141.
    [21] IWASAKI T, SHIMIZU Y, KIMURA I. Modelling of the initiation and development of tidal creek networks[C]//Proceedings of the Institution of Civil Engineers-Maritime Engineering. [S.l.]:Thomas Telford Ltd, 2013: 76-88.
    [22] MARCIANO R, WANG Z B, HIBMA A, et al. Modeling of channel patterns in short tidal basins[J]. Journal of Geophysical Research: Earth Surface. 2005, 110: F1001.
    [23] 董智超. 七里海潟湖动力地貌演变及水体交换的影响机制研究[D]. 上海:同济大学, 2020.DONG Zhichao. Study on influence mechanisms of morphodynamic evolution and water exchange of Qilihai lagoon[D]. Shanghai: Tongji University, 2020.
    [24] KUANG C, FAN J, DONG Z, et al. Influence mechanism of geomorphological evolution in a tidal lagoon with rising sea level[J]. Journal of Marine Science and Engineering, 2022, 10(1): 108.
    [25] 李从先, 蔡进功, 陈刚. 砂坝-泻湖沉积体系地层分类及其应用[J]. 同济大学学报(自然科学版), 1993,40(1): 83LI Conxian, CAI Jingong, CHEN Gang. Stratigraphic types and applications of the barrier-lagoon system[J]. Journal of Tongji University (Natural Science), 1993,40(1): 83.
    [26] 徐兴永, 李萍, 刘乐军, 等. 河北七里海外海岸沙丘群成因新探[J]. 海洋科学进展, 2006(3): 349.XU Xingyong, LI Ping, LIU Lejun, et al. A new exploration into formation causes of coastal dunes outside the Qilihai Lagoon, Hebei Province[J]. Advances in Marine Science, 2006(3): 349.
    [27] 袁振杰, 杨会利, 高伟明. 七里海潟湖的演化与修复[J]. 海洋开发与管理, 2008(6): 99.YUAN Zhenjie, YANG Huili, GAO Weiming. The evolution and restoration of Qilihai Lagoon[J]. Ocean Development and Management, 2008(6): 99.
    [28] KUANG C, DONG Z, GU J, et al. Quantifying the influence factors on water exchange capacity in a shallow coastal lagoon[J]. Journal of Hydro-environment Research, 2020, 31: 26.
    [29] 邢容容, 刘修锦, 邱若峰. 七里海潟湖湿地近期演变分析及生态修复研究[J]. 海洋开发与管理, 2019, 36(11): 64.XING Rongrong, LIU Xiujin, QIU Ruofeng, et al. Recent evolution analysis and ecological restoration of Qilihai Lagoon Wetland[J]. Ocean Development and Management, 2019, 36(11): 5.
    [30] 匡翠萍, 范家栋, 丛新. 秦皇岛市海洋生态保护修复工程对七里海潟湖水体交换的影响[R]. 上海:同济大学, 2022.KUANG Cuiping, FAN Jiadong, CONG Xin. Impacts on the water exchange capacity of Qilihai Lagoon of the marine-ecological restoration in Qinhuangdao[R]. Shanghai: Tongji University, 2022.
    [31] RODI W. Turbulence models and their application in hydraulics[M]. London: CRC Press, 1993.
    [32] PARTHENIADES E. Erosion and deposition of cohesive soils[J]. Journal of the Hydraulics Division. 1965, 91(1): 105.
    [33] KRONE R B. Flume study of the transport of sediment in estuarial processes[R].[S.l.]: Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, 1962.
    [34] FAN J, KUANG C, DONG Z, et al. Investigation on geomorphological evolution in a lagoon dominated by increasing runoff[C]//Proceedings of The 32nd International Ocean and Polar Engineering Conference. [S.l.]: The 32nd International Ocean and Polar Engineering Conference,2022: 2861-2866.
    [35] FRIEDRICHS C T. Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels[J]. Journal of Coastal Research, 1995(1): 1062.
    [36] DIPLAS P. Characteristics of self-formed straight channels[J]. Journal of Hydraulic Engineering,1990, 116(5): 707.
    [37] De SWART H E , ZIMMERMAN J T F. Morphodynamics of tidal inlet systems[J]. Annual Review of Fluid Mechanics, 2009, 41: 203
    [38] VAN DE KREEKE J. Can multiple tidal inlets be stable?[J]. Estuarine, Coastal and Shelf Science, 1990, 30(3): 261.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

匡翠萍,范家栋,董智超,韩雪健.双导堤工程下潮汐汊道与海岸潟湖地貌稳定性[J].同济大学学报(自然科学版),2023,51(10):1584~1594

复制
分享
文章指标
  • 点击次数:160
  • 下载次数: 595
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2022-03-07
  • 在线发布日期: 2023-11-01
文章二维码