低渗透率智能网联环境下高风险事件预警方法
CSTR:
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,上海 201804

作者简介:

陈晓芸(1993—),女,工学博士,主要研究方向为交通运行建模与仿真、驾驶行为研究。 E-mail: 1610753@tongji.edu.cn

通讯作者:

孙剑(1979—),男,教授,博士生导师,工学博士,主要研究方向为交通流理论与仿真,智能网联汽车与车 路协同。 E-mail: sunjian@tongji.edu.cn

中图分类号:

U491

基金项目:

国家重点研究发展计划(2018YFB1600505);国家自然科学基金重点项目(52125208);浙江省重点研发计划(2021C01011)


Early Warning Methods for Traffic High-risk Events Under Low Penetration of Connected and Autonomous Vehicles
Author:
Affiliation:

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种低渗透率智能网联环境下高风险事件预警方法。具体而言,基于熵能表征系统状态的特点提出交通熵的概念,将个体车辆的微观驾驶行为量化为交通熵,以表征交通流状态;再将交通熵作为长短时记忆网络模型(Long Short-term Memory, LSTM)的输入参数建立预警模型;最后,使用HighD轨迹数据集提取高风险事件,并验证模型有效性。结果显示,使用交通熵的模型误报率和漏报率大幅降低。以智能车渗透率10 %为例,误报率和漏报率分别从6.18 %和11.47 %下降到了1.95 %和3.12 %;在预测模式下,对高风险事件误报率和漏报率为2.28 %和3.82 %。

    Abstract:

    We propose an early warning method for high-risk events of traffic operation under low penetration of connected and autonomous vehicles(CAVs). Specifically, we first define the concept of traffic entropy, and quantifies the micro driving behavior of individual vehicles as a parameter represented by traffic entropy, which is used to characterize the state of macroscopic traffic flow. And then the traffic entropy is used as the input parameter of the Long Short-Term Memory (LSTM) model to establish the early warning model of high-risk events. The HighD Dataset from German highways was utilized for the empirical analyses. In order to compare the application results under CAVs environment, an autonomous-vehicles scenario and a connected-vehicles scenario were set for the high-risk events and non-risk events extracted from the HighD Dataset. and the effectiveness of the warning of high-risk events under different vehicle permeability was compared. Results show that, the false alarm and missed alarm rates of early warning model with traffic entropy parameters are both reduced. Taking the low-penetration CAVs of 10% as an example, the false alarm and missed alarm rates reduced from 6.18 % and 11.47 % to 1.95 % and 3.12 %, respectively. At the same time, the false alarm and missed alarm rates are only 2.28 % and 3.82 % under the prediction environment.

    参考文献
    [1] GUO F, KLAUER S, HANKEY J, et al. Near crashes as crash surrogate for naturalistic driving studies[J]. Transportation Research Record Journal of the Transportation Research Board, 2010, 2147(2147):66.
    [2] PARK H, HAGHANI A. Real-time prediction of secondary incident occurrences using vehicle probe data[J]. Transportation Research Part C Emerging Technologies, 2016, 70(9):69.
    [3] DINGUS T, KLAUER S, NEALE V L, et al. The 100-car naturalistic driving study, phase II-results of the 100-car field experiment[R]. [S.l.]:Department of Transportation, National Highway Traffic Safety Administration, 2006.
    [4] HOSSAIN M, ABDEL-ATY M, QUDDUS M A, et al. Real-time crash prediction models: State-of-the-art, design pathways and ubiquitous requirements[J]. Accident Analysis & Prevention, 2019, 124(3):66.
    [5] FEDERAL HIGHWAY ADMINISTRATION. Highway Safety Improvement Program (HSIP) [R].Federal Highway Administration, 2020.
    [6] KWAK H C, KHO S. Predicting crash risk and identifying crash precursors on Korean expressways using loop detector data[J]. Accident Analysis and Prevention, 2016, 88(3):9.
    [7] 孙剑,孙杰.城市快速路实时交通流运行安全主动风险评估[J].同济大学学报(自然科学版),2014,42(6):873.SUN Jian, SUN Jie. Proactive assessment of real time traffic flow accident risk on urban expressway [J]. Journal of Tongji University (Natural Science), 2014,42(6):873.
    [8] YU R, WANG X, YANG K, et al. Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric modeling approach[J]. Accident Analysis & Prevention, 2016, 95(Pt B):495.
    [9] ROSHANDEL S, ZHENG Z, WASHINGTON S. Impact of real-time traffic characteristics on freeway crash occurrence: Systematic review and meta-analysis[J]. Accident Analysis & Prevention, 2015, 79: 198.
    [10] KATRAKAZAS C, QUDDUS M, CHEN W, et al. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions[J]. Transportation research, Part C. Emerging technologies, 2015, 60: 416.
    [11] WANG L, ABDEL-ATY M, MA W, et al. Quasi-vehicle-trajectory-based real-time safety analysis for expressways[J]. Transportation Research Part C: Emerging Technologies, 2019, 103(6): 30.
    [12] YAN K, QU X. A review of crash surrogate events[C/CD]// Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). 2014.
    [13] PEREZ M, SUDWEEKS J, SEARS E, et al. Performance of basic kinematic thresholds in the identification of crash and near-crash events within naturalistic driving data[J]. Accident Analysis & Prevention, 2017, 103: 10.
    [14] SUDWEEKS J D. Using functional classification to enhance naturalistic driving data crash/near crash algorithms[R].Blacksburg:Virginia Tech Transportation Institute,2015.
    [15] 王雪松,徐晓妍.基于自然驾驶数据的危险事件识别方法[J].同济大学学报(自然科学版),2020,48(1):51.WANG Xuesong, XU Xiaoyan.Detection of safety-critical events based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2020,48(1):51.
    [16] VAN A. A time-based analysis of road user behaviour in normal and critical encounters[D]. Delft: TNO, 1990.
    [17] VOGEL K. A comparison of headway and time to collision as safety indicators[J]. Accident Analysis and Prevention, 2003, 35(3):427.
    [18] ARCHER J. Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: A study of urban and suburban intersections[D]. Stockholm: Royal Institute of Technology, 2005.
    [19] OZBAY K, YANG H, BARTIN B, et al. Derivation and validation of new simulation-based surrogate safety measure[J]. Transportation Research record, 2008, 2083(1): 105.
    [20] YANG H. Simulation-based evaluation of traffic safety performance using surrogate safety measures[D]. New Brunswick: Rutgers University Graduate School, 2012.
    [21] YU R, HAN L, ZHANG H. Trajectory data based freeway high-risk events prediction and its influencing factors analyses[J]. Accident Analysis & Prevention, 2021, 154(1):106085.
    [22] YU R, ABDEL-ATY M. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes[J]. Accident Analysis & Prevention, 2013, 58(9):97.
    [23] YU R, ABDEL-ATY M. Utilizing support vector machine in real-time crash risk evaluation[J]. Accident Analysis & Prevention, 2013, 51(3):252.
    [24] SUN J, SUN J, Real-time crash prediction on urban expressways: identification of key variables and a hybrid support vector machine model[J]. IET Intelligent Transport Systems,2016, 10(5): 331.
    [25] ABDEL-ATY M, SHI Q, PANDE A, et al. Real time traffic operations and safety[M]. [S.l.]: Emerald Group Publishing Limited, 2018.
    [26] CLAUSIUS R. über die bewegende Kraft der W?rme und die Gesetze, welche sich daraus für die W?rmelehre selbst ableiten lassen[J]. Annalen der Physik, 1850, 155(3): 368.
    [27] BOLTZMANN L. über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen W?rmetheorie und der Wahrscheinlichkeitsrechnung, respective den S?tzen über das W?rmegleichgewicht[M]. [S.l.]:Kk Hof-und Staatsdruckerei, 1877.
    [28] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379.
    [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735.
    [30] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: Where we are and where we're going[J]. Transportation Research Part C Emerging Technologies, 2014, 43(1):1
    [31] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54:187.
    [32] HUANG X, SUN J, SUN J. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks[J]. Transportation Research Part C: Emerging Technologies, 2018, 95(10):346.
    [33] SUN J, QI X, XU Y, et al. Vehicle turning behavior modeling at conflicting areas of mixed-flow intersections based on deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(9): 3674.
    [34] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC).[S.l.]: IEEE, 2018: 2118-2125.
    [35] SAYED T, BROWN G, NAVIN F. Simulation of traffic conflicts at unsignalized intersections with TSC-Sim[J]. Accident Analysis & Prevention, 1994, 26(5):593.
    [36] HOGEMA J H, JANSSEN W H. Effects of intelligent cruise control on driving behaviour : a simulator study[C/CD]// Intelligent Transportation: Realizing the Future Abstracts of the Third World Congress on Intelligent Transport Systems. [S.l.]:TNO, 1996.
    [37] HUANG F, LIU P, YU H, et al. Identifying if VISSIM simulation model and SSAM provide reasonable estimates for field measured traffic conflicts at signalized intersections[J]. Accident Analysis & Prevention, 2013, 50(1):1014.
    [38] QIANG MENG, QU X. Estimation of rear-end vehicle crash frequencies in urban road tunnels[J]. Accident Analysis & Prevention, 2012, 48:254.
    [39] ABDEL-ATY M, UDDIN N, PANDE A, et al. Predicting freeway crashes from loop detector data by matched case-control logistic regression[J]. Transportation Research Record Journal of the Transportation Research Board, 2004, 1897:88.
    [40] GRAZIOTIN D , ABRAHAMSSON P. A web-based modeling tool for the SEMAT essence theory of software engineering[J]. Journal of Open Research Software, 2013, 1(1): 4.
    [41] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017 ,99:2999.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈晓芸,叶颖俊,余荣杰,孙剑.低渗透率智能网联环境下高风险事件预警方法[J].同济大学学报(自然科学版),2023,51(10):1595~1605

复制
分享
文章指标
  • 点击次数:249
  • 下载次数: 590
  • HTML阅读次数: 134
  • 引用次数: 0
历史
  • 收稿日期:2022-05-05
  • 在线发布日期: 2023-11-01
文章二维码