120kW级燃料电池可变喉口引射器的设计及特性
CSTR:
作者:
作者单位:

1.同济大学汽车学院,上海 201804;2.中国汽车工程研究院股份有限公司,重庆 401122

作者简介:

卢义康(1997—),男,博士生,主要研究方向为燃料电池氢循环及水管理。E-mail: luuchang@163.com

通讯作者:

许思传(1963—),男,教授、博士生导师,工学博士,主要研究方向为燃料电池发动机系统。 E-mail:scxutj@163.com

中图分类号:

TM911.42

基金项目:

国家重点研发计划(2017YFB0102802)


A Variable-nozzle Ejector for a 120kW PEMFC Stack: Design and Performance
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.China Automotive Engineering Research Institute Co., Ltd, Chongqing 401122, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    引射器是质子交换膜燃料电池氢气循环系统中的关键部件,依靠超音速流动的射流工质实现阳极排气的再循环。传统的固定结构引射器通常针对电堆额定工况设计,工作在非设计工况时性能较差;而可变喉口引射器可以动态地改变其喉口大小,有效扩大其工作范围。基于Sokolov设计理论,搭建了引射器的一维模型并探究了其工作特性,在此基础上提出了一种可变喉口引射器的设计方法。研究结果表明,引射器的工作特性主要受其操作压力、喉口直径和混合室直径影响;通过缩小喉口、提高工作流体压力可以使工作喷嘴保持临界状态,这对大负载下的引射性能影响较小,但能够有效提高电堆小负载下的引射比,并使引射器的工作范围向小负载扩展。

    Abstract:

    The ejector acts as a critical component in the hydrogen recirculation system for proton exchange membrane fuel cells which realizes anode exhaust recirculation via a supersonic jet. Traditional fixed-geometry ejectors are commonly designed according to the stack’s rated condition and achieve poor performance in off-design conditions. In contrast, variable-nozzle ejectors can adjust the throat’s opening dynamically and enlarge the operating range. Based on Sokolov’s theory, a one-dimensional model for the ejector was built to study its working characteristics, and a design methodology for the variable-nozzle ejector was later proposed. The results show that the ejector’s performance is mainly affected by its operating pressure, the throat diameter, and the mixing chamber’s diameter. By shrinking the throat and raising primary pressure, the working nozzle can be kept critical, which has little effect on entraining performance under high stack load. However, under low stack load, the entrainment ratio can be significantly improved, and the operating range expands toward low stack load.

    参考文献
    [1] XUE H, WANG L, ZHANG H, et al. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation [J]. International Journal of Hydrogen Energy, 2020, 45(28): 14500.
    [2] BRUNNER D A, MARCKS S, BAJPAI M, et al. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications [J]. International Journal of Hydrogen Energy, 2012, 37(5): 4457.
    [3] JENSSEN D, BERGER O, KREWER U. Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation [J]. Applied Energy, 2017, 195: 324.
    [4] HOSSEINZADEH E, ROKNI M, JABBARI M, et al. Numerical analysis of transport phenomena for designing of ejector in PEM forklift system [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6664.
    [5] B.J.HUANG, J.M.CHANG, C.P.WANG, et al. A 1-D analysis of ejector performance [J]. 1999, 22(5): 354.
    [6] CHEN W, LIU M, CHONG D, et al. A 1D model to predict ejector performance at critical and sub-critical operational regimes [J]. International Journal of Refrigeration, 2013, 36(6): 1750.
    [7] ZHU Y, LI Y. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system [J]. Journal of Power Sources, 2009, 191(2): 510.
    [8] SOKOLOV E. Jet apparatuses [M]. 2nd ed. Moscow: Energy Publishing House, 1970.
    [9] TANG Y, LIU Z, LI Y, et al. A double-choking theory as an explanation of the evolution laws of ejector performance with various operational and geometrical parameters [J]. Energy Conversion and Management, 2020, 206: 112499.
    [10] 王旭辉, 许思传, 张白桃. 80 kW燃料电池引射器流量控制方法研究[J]. 同济大学学报(自然科学版), 2018, 46(S1): 122.WANG X, XU S, ZHANG B. Control method of ejector's mass flow rate for 80 kW fuel cell stack [J]. Journal of Tongji University (Natural Science), 2018, 46(S1): 122.
    [11] PEI P, REN P, LI Y, et al. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system [J]. Applied Energy, 2019, 235: 729.
    [12] MAGHSOODI A, AFSHARI E, AHMADIKIA H. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm [J]. Applied Thermal Engineering, 2014, 71(1): 410.
    [13] ZHU Y, CAI W, WEN C, et al. Numerical investigation of geometry parameters for design of high performance ejectors [J]. Applied Thermal Engineering, 2009, 29(5): 898.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢义康,王旭辉,许思传.120kW级燃料电池可变喉口引射器的设计及特性[J].同济大学学报(自然科学版),2023,51(10):1625~1632

复制
分享
文章指标
  • 点击次数:697
  • 下载次数: 932
  • HTML阅读次数: 384
  • 引用次数: 0
历史
  • 收稿日期:2022-02-20
  • 在线发布日期: 2023-11-01
文章二维码