可降解高分子材料在心血管治疗植介入器械中的应用
CSTR:
作者:
作者单位:

四川大学 国家生物医学材料工程技术研究中心,四川 成都 610064

作者简介:

王云兵,男,教授,博士生导师,工学博士,主要研究方向为心血管材料及器械。 E-mail: yunbing.wang@scu.edu.cn

中图分类号:

R318


Application of Biodegradable Polymeric Materials in Interventional Medical Devices for Cardiovascular Therapy
Author:
Affiliation:

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    可降解心血管治疗植介入器械已经成为医疗器械开发中的热点。生物医学材料是可降解心血管治疗植介入器械的核心。总结了相关可降解高分子材料的化学物理性质以及降解特性,讨论了可降解心血管植介入器械预期功能与材料性质的关系,并指出了未来可降解医用高分子材料面临的挑战与发展方向。

    Abstract:

    Degradable cardiovascular interventional devices have become a hot topic in medical device development. Biomedical materials are the core of degradable cardiovascular interventional devices. This paper summarizes the chemical and physical properties as well as the degradation characteristics of related degradable polymeric materials, and discusses the relationship between the expected functions of degradable cardiovascular interventional devices and the properties of degradable polymeric materials. Finally, it points the challenges and future development directions of biodegradable polymeric materials to provide reference for relevant practitioners.

    参考文献
    [1] 马丽媛,王增武,樊静,等.《中国心血管健康与疾病报告2021》概要[J].中国介入心脏病学杂志, 2022, 7: 30.MA Liyuan, WANG Zengwu, FAN Jing, et al. The synopsis of “Annual Report on Cardiovascular Health and Diseases in China (2021)” [J]. Chinese Journal of Interventional Cardiology, 2022, 7: 30.
    [2] WANG Y, LI G, YANG L, et al. Development of innovative biomaterials and devices for the treatment of cardiovascular diseases [J]. Advanced Materials, 2022, 34(46): 2201971.
    [3] KURAMITSU S, OHYA M, SHINOZAKI T, et al. Risk factors and long-term clinical outcomes of second-generation drug-eluting stent thrombosis: insights from the REAL-ST registry [J]. Circulation: Cardiovascular Interventions, 2019, 12(6): e007822.
    [4] BISSESSOR N. Current perspectives in percutaneous atrial septal defect closure devices [J]. Medical Devices: Evidence and Research, 2015, 8: 297.
    [5] OBIWELUOZOR F O, EMECHEBE G A, KIM D W, et al. Considerations in the development of small-diameter vascular graft as an alternative for bypass and reconstructive surgeries: a review [J]. Cardiovascular Engineering and Technology, 2020, 11: 495.
    [6] MALIKMAMMADOV E, TANIR T E, KIZILTAY A, et al. PCL and PCL-based materials in biomedical applications [J]. Journal of Biomaterials Science( Polymer Edition), 2018, 29(7/9): 863.
    [7] MIDDLETON J C, TIPTON A J. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials, 2000, 21(23): 2335.
    [8] SABINO M A, GONZáLEZ S, MáRQUEZ L, et al. Study of the hydrolytic degradation of polydioxanone PPDX [J]. Polymer Degradation and Stability, 2000, 69(2): 209.
    [9] PARK J M , KIM D S, KIM S R. Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly (p-dioxanone) fiber/poly (L-lactide) composites by micromechanical test and surface wettability [J]. Composites Science and Technology, 2004, 64(6): 847.
    [10] GARLOTTA D. A literature review of poly (lactic acid) [J]. Journal of Polymers and the Environment, 2001, 9: 63.
    [11] GUPTA B, REVAGADE N, HILBORN J. Poly (lactic acid) fiber: an overview [J]. Progress in Polymer Science, 2007, 32(4): 455.
    [12] NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials [J]. Progress in Polymer Science, 2007, 32(8): 762.
    [13] SABINO M, FEIJOO J, MüLLER A. Crystallisation and morphology of poly (p-dioxanone) [J]. Macromolecular Chemistry and Physics, 2000, 201(18): 2687.
    [14] BAI W, CHEN D, LI Q, et al. In vitro hydrolytic degradation of poly (para-dioxanone) with high molecular weight [J]. Journal of Polymer Research, 2009, 16: 471.
    [15] FENG Q, JIANG W, SUN K, et al. Mechanical properties and in vivo performance of a novel sliding-lock bioabsorbable poly-p-dioxanone stent [J]. Journal of Materials Science: Materials in Medicine, 2011, 22: 2319.
    [16] MARTINS J A, LACH A A, MORRIS H L, et al. Polydioxanone implants: a systematic review on safety and performance in patients [J]. Journal of Biomaterials Applications, 2020, 34(7): 902.
    [17] HOUDART R, LAVERGNE A, VALLEUR P, et al. Polydioxanone in digestive surgery: an experimental study [J]. The American Journal of Surgery, 1986, 152(3): 268.
    [18] ESHRAGHI S, DAS S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering [J]. Acta Biomaterialia, 2010, 6(7): 2467.
    [19] ABEDALWAFA M, WANG F, WANG L, et al. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review [J]. Reviews on Advanced Materials Science, 2013, 34(2): 123.
    [20] SHRIVASTAVA A, DONDAPATI S. Biodegradable composites based on biopolymers and natural bast fibres: a review [J]. Materials Today: Proceedings, 2021, 46: 1420.
    [21] ASHAMMAKHI N, ROKKANEN P. Absorbable polyglycolide devices in trauma and bone surgery [J]. Biomaterials, 1997, 18(1): 3.
    [22] ORMISTON J A, SERRUYS P W. Bioabsorbable coronary stents [J]. Circulation: Cardiovascular Interventions, 2009, 2(3): 255.
    [23] SOMSZOR K, BAS O, KARIMI F, et al. Personalized, mechanically strong, and biodegradable coronary artery stents via melt electrowriting [J]. ACS Macro Letters, 2020, 9(12): 1732.
    [24] WANG D, XU Y, LI Q, et al. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities [J]. Journal of Materials Chemistry B, 2020, 8(9): 1801.
    [25] HOLZER R, HIJAZI Z M. Interventional approach to congenital heart disease [J]. Current Opinion in Cardiology, 2004, 19(2): 84.
    [26] ROH J D, SAWH-MARTINEZ R, BRENNAN M P, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling [J]. Proceedings of the National Academy of Sciences, 2010, 107(10): 4669.
    [27] HIBINO N, MEJIAS D, PIETRIS N, et al. The innate immune system contributes to tissue-engineered vascular graft performance [J]. The FASEB Journal, 2015, 29(6): 2431.
    [28] MORENO K, MURRAY-WIJELATH J, YAGI M, et al. Circulating inflammatory cells are associated with vein graft stenosis [J]. Journal of Vascular Surgery, 2011, 54(4): 1124.
    [29] GUPTA P, MANDAL B B. Tissue-engineered vascular grafts: emerging trends and technologies [J]. Advanced Functional Materials, 2021, 31(33): 2100027.
    [30] SARKAR S, SALES K M, HAMILTON G, et al. Addressing thrombogenicity in vascular graft construction [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 82(1): 100.
    [31] SáNCHEZ P F, BREY E M, BRICE?O J C. Endothelialization mechanisms in vascular grafts [J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(11): 2164.
    [32] 杨立, 罗日方, 雷洋, 等. 微创介入全降解血管支架和心脏瓣膜国内外研发现状与研究前沿 [J]. 材料导报, 2019, 33(1): 40.YANG Li, LUO Rifang, LEI Yang, et al. Frontier research and development of minimally invasive and interventional fully biodegradable stent and heart valve [J]. Materials Reports, 2019, 33(1): 40.
    [33] ZONG J, HE Q, LIU Y, et al. Advances in the development of biodegradable coronary stents: a translational perspective [J]. Materials Today Bio, 2022, 16: 100368.
    [34] NIKLASON L E, LAWSON J H. Bioengineered human blood vessels [J]. Science, 2020, 370(6513): eaaw8682.
    [35] DURáN-REY D, CRISóSTOMO V, SáNCHEZ-MARGALLO J A, et al. Systematic review of tissue-engineered vascular grafts [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 771400.
    [36] RADKE D, JIA W, SHARMA D, et al. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development [J]. Advanced Healthcare Materials, 2018, 7(15): 1701461.
    [37] KIRKTON R D, SANTIAGO-MAYSONET M, LAWSON J H, et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation [J]. Science Translational Medicine, 2019, 11(485): eaau6934.
    [38] CHANG W G, NIKLASON L E. A short discourse on vascular tissue engineering [J]. NPJ Regenerative Medicine, 2017, 2(1): 7.
    [39] DAHL S L, KYPSON A P, LAWSON J H, et al. Readily available tissue-engineered vascular grafts [J]. Science Translational Medicine, 2011, 3(68): 68ra9.
    [40] QUINT C, KONDO Y, MANSON R J, et al. Decellularized tissue-engineered blood vessel as an arterial conduit [J]. Proceedings of the National Academy of Sciences, 2011, 108(22): 9214.
    [41] LAWSON J H, GLICKMAN M H, ILZECKI M, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials [J]. The Lancet, 2016, 387(10032): 2026.
    [42] LIN C, LIU L, LIU Y, et al. Recent developments in next-generation occlusion devices [J]. Acta Biomaterialia, 2021, 128: 100.
    [43] SHI D, KANG Y, ZHANG G, et al. Biodegradable atrial septal defect occluders: a current review [J]. Acta Biomaterialia, 2019, 96: 68.
    [44] LI Z, KONG P, LIU X, et al. A fully biodegradable polydioxanone occluder for ventricle septal defect closure [J]. Bioactive Materials, 2023, 24: 252.
    [45] GUO G, HU J, WANG F, et al. A fully degradable transcatheter ventricular septal defect occluder: towards rapid occlusion and post-regeneration absorption [J]. Biomaterials, 2022, 291: 121909.
    [46] LI B, XIE Z, WANG Q, et al. Biodegradable polymeric occluder for closure of atrial septal defect with interventional treatment of cardiovascular disease [J]. Biomaterials, 2021, 274: 120851.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王云兵,郭高阳.可降解高分子材料在心血管治疗植介入器械中的应用[J].同济大学学报(自然科学版),2023,51(11):1649~1656

复制
分享
文章指标
  • 点击次数:306
  • 下载次数: 715
  • HTML阅读次数: 834
  • 引用次数: 0
历史
  • 收稿日期:2023-08-12
  • 在线发布日期: 2023-12-01
文章二维码