基于目标检测的施工钢材物料智能实时计数
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.同济大学 土木工程防灾减灾全国重点实验室,上海200092;3.中南建筑设计院股份有限公司,湖北 武汉 430071

作者简介:

陈 隽(1972—),男,教授,博士生导师,工学博士,主要研究方向为工程结构大数据防灾。 E-mail:cejchen@tongji.edu.cn

中图分类号:

TU712;TP391

基金项目:

国家自然科学基金(52178151);同济大学学科交叉攻关项目(2022-3-YB-06)


Intelligent Real-Time Counting of Construction Materials Based on Object Detection
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;3.Central South Architectural Design Institute, Wuhan 430071, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    研究了基于深度学习目标检测技术的钢材智能计数方法。通过拍摄并标注大量施工现场的钢筋、圆钢管、方钢管图片,构建了包含近40万个计数点的数据集。基于YOLOv4目标检测算法,建立了钢材智能计数模型,并通过改进其网络结构、损失函数,以及采用合适的训练策略,提高了模型对于钢材的计数精度。检验表明,模型的平均精度为91.41%,平均绝对误差为4.07。利用上述成果开发的APP软件,可通过手机拍照、上传,完成实时计数。

    Abstract:

    The intelligent counting method of steel based on the deep learning target detection technology is studied in this paper. First, many pictures of steel bars, round steel pipe, and square steel pipe at the construction site are obtained and marked, and a data set containing nearly 400 000 counting points is constructed. Based on the YOLOv4 object detection algorithm, an intelligent steel counting model is established, and the counting accuracy of the steel model is improved by improving its network structure, loss function, and adopting appropriate training strategies. The maximum average precision of the model is 91.41%, with a mean absolute error of 4.07. Based on the above achievements, an APP software is developed, and the real-time counting is completed by taking photos and uploading them.

    参考文献
    [1] 廖玉平. 加快建筑业转型 推动高质量发展——解读《关于推动智能建造与建筑工业化协同发展的指导意见》[J]. 中国勘察设计, 2020(9): 20.LIAO Yupin. Speed up the transformation of construction industry and promote high-quality development-- interpretation of 《The Guidance on Promoting the Coordinated Development of Intelligent Construction and Construction Industrialization》 [J]. Survey and Design in China, 2020(9): 20.
    [2] ZHANG D, XIE Z, WANG C. Bar section image enhancement and positioning method in on-line steel bar counting and automatic separating system[C]//2008 Congress on Image and Signal Processing. Piscataway: IEEE, 2008, 2: 319-323.
    [3] YING X, WEI X, PEI X Y, et al. Research on an automatic counting method for steel bars’ image[C]//2010 International Conference on Electrical and Control Engineering. Piscataway: IEEE, 2010: 1644-1647.
    [4] ZHAO J, XIA X, WANG H, et al. Design of real-time steel bars recognition system based on machine vision[C]//2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway: IEEE, 2016, 1: 505-509.
    [5] SU Z, FANG K, PENG Z, et al. Rebar automatically counting on the product line[C]//2010 IEEE International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2010, 2: 756-760.
    [6] WU Y, ZHOU X, ZHANG Y. Steel bars counting and splitting method based on machine vision[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway: IEEE, 2015: 420-425.
    [7] LIU Y, LIU Y, SUN Z. Research on stainless steel pipes auto-count algorithm based on image processing[C]//2012 Spring Congress on Engineering and Technology. Piscataway: IEEE, 2012: 1-3.
    [8] LECUN Y, BENGIO Y, HINTON G, et al. Deep learning[J]. Nature, 2015, 521(7553): 436.
    [9] ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212.
    [10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
    [11] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020, 34(7): 12993-13000.
    [12] YANG X, YANG X, YANG J, et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[J]. Advances in Neural Information Processing Systems, 2021, 22:18381.
    [13] YANG X, YAN J, MING Q, et al. Rethinking rotated object detection with gaussian wasserstein distance loss[C]//International Conference on Machine Learning. [S.l.]:PMLR, 2021: 11830-11841.
    [14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference On Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
    [15] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
    [16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
    [17] ZHANG H, ZU K, LU J, et al. Epsanet: an efficient pyramid split attention block on convolutional neural network[J]. arXiv:2105.14447,2021.
    [18] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018: 3-19.
    [19] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3139-3148
    [20] LI Y, LU Y, CHEN J. A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector[J]. Automation in Construction, 2021, 124: 103602.
    [21] LI Y, CHEN J. Computer vision–based counting model for dense steel pipe on construction sites[J]. Journal of Construction Engineering and Management, 2022, 148(1): 04021178.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈隽,陈文豪,李洋.基于目标检测的施工钢材物料智能实时计数[J].同济大学学报(自然科学版),2023,51(11):1701~1710

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 460
  • HTML阅读次数: 526
  • 引用次数: 0
历史
  • 收稿日期:2022-04-07
  • 在线发布日期: 2023-12-01
文章二维码