面向货车编队的水泥混凝土路面结构拓扑优化设计及验证
CSTR:
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,上海 201804

作者简介:

高达辰(1999—),男,博士生,主要研究方向为铺面结构优化设计。E-mail: gdc3489@tongji.edu.cn

通讯作者:

马鲁宽(1990—),男,工学博士,副研究员,主要研究方向为新型铺面结构设计与智能化。 E-mail: 20777503@tongji.edu.cn

中图分类号:

U416.222

基金项目:

国家自然科学基金(52008310)


Topology Optimization Design and Validation of Cement Concrete Pavement Structure for Truck Platooning
Author:
Affiliation:

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    货车编队的渠化交通荷载对路面结构提出了高承载力及精细化设计需求。结合拓扑优化理论,基于变密度法、拓扑梯度法与移动渐近线法,提出了面向水泥混凝土路面的结构拓扑优化算法;分析货车编队轮迹偏移特征,利用数值计算设计了面向货车编队的水泥混凝土路面拓扑优化原型结构;从力学性能角度通过室内缩尺试验探究了拓扑优化原型结构的合理性。结果表明,对于轮迹零偏移和15 cm偏移范围的两种荷载分布,拓扑优化原型结构最大疲劳应力分别为传统结构的45.0%和37.5%,同时其质量分别为传统结构的34.3%和30.5%;试验测得的拓扑优化原型结构的最大疲劳应力与理论计算值相近,且相较于传统结构,其极限承载力提升了18.3%,证明了设计方法的有效性。

    Abstract:

    Truck platooning has proposed high bearing capacity and fine design requirement for pavement structure. In combination with the topology optimization theory, this paper proposes a topology optimization method of cement concrete pavement structure based on the solid isotropic microstructure with penalization (SIMP) method, the topology gradient method, and the method of moving asymptotes (MMA). A prototype structure of cement concrete pavement is designed based on the numerical calculation, considering the analyzed wheel track characteristic of truck platooning. Finally, the scale experiment is employed to verify the mechanical property of the prototype structure. The results show that the maximum fatigue stress of the prototype is reduced to 45.0% and 37.5% of the traditional concrete pavement structure at a channelized traffic load and the traffic load with an offset of 15 cm respectively, and the weight is reduced to 34.3% and 30.5% of the traditional structure. The bearing capacity of the prototype structure measured by the experiment is 18.3% higher than the traditional structure, which proves the effectiveness of the design method.

    参考文献
    [1] TSUGAWA S, JESCHKE S, SHLADOVER S E. A review of truck platooning projects for energy savings[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 68.
    [2] MEYER G, BEIKER S. Road vehicle automation[M]. Cham: Springer International Publishing, 2014.
    [3] CHEN F, SONG M, MA X. A lateral control scheme of autonomous vehicles considering pavement sustainability[J]. Journal of Cleaner Production, 2020, 256: 120669.
    [4] 赵鸿铎, 朱兴一, 涂辉招,等. 智能铺面的内涵与架构[J]. 同济大学学报(自然科学版), 2017, 45(8): 1131.ZHAO Hongduo, ZHU Xingyi, TU Huizhao, et al. Concept and framework of smart pavement[J]. Journal of Tongji University(Natural Science), 2017, 45(8): 1131.
    [5] SUN L, ZHAO H, TU H, et al. The smart road: practice and concept[J]. Engineering, 2018, 4(4): 436.
    [6] 赵兰若, 赵鸿铎, 蔡爵威, 等. 考虑邻板高程差的装配式水泥路面行驶舒适性研究 [J]. 公路交通科技, 2021, 38(3): 10.ZHAO Lanruo, ZHAO Hongduo, CAI Juewei, et al. Study on driving comfort of precast concrete pavement considering joint faulting[J]. Journal of Highway and Transportation Research and Development, 2021, 38(3): 10.
    [7] MICHELL A. The limits of economy of materials in frame structures[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1904, 8(47): 589.
    [8] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197.
    [9] BENDSOE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193.
    [10] ZHANG W, ZHONG W, Xu G. An explicit length scale control approach in SIMP-based topology optimization[J]. Computer Methods in Applied Mechanics & Engineering, 2014, 282: 71.
    [11] BRUNS T E. A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization[J]. Structural and Multidiplinary Optimization, 2005, 30(6): 428.
    [12] TALISCHI C, PAULINO G H, PEREIRA A, et al. PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes[J]. Structural and Multidisciplinary Optimization, 2015, 45(3): 329.
    [13] GIRALDO-LONDONO O, PAULINO G H. PolyStress: a Matlab implementation for local stress-constrained topology optimization using the augmented lagrangian method[J]. Structural and Multidisciplinary Optimization, 2021, 63(4): 2065.
    [14] OSHER S. Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum[J]. Journal of Computational Physics, 2001, 171(1): 272.
    [15] ALLAIRE G, JOUVE F. A level-set method for vibration and multiple loads structural optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(30): 3269.
    [16] WANG M Y, WANG X. “Color” level sets: a multi-phase method for structural topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6): 469.
    [17] XIE Y M, STEVEN G P. Evolutionary structural optimization[M]. London: Springer, 1997.
    [18] ZHI H Z, Yi M X, HUANG X. Evolutionary topology optimization of structures with multiple displacement and frequency constraints[J]. Advances in Structural Engineering, 2012, 15(2): 385.
    [19] 谢亿民,黄晓东,左志豪,等. 渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展[J]. 力学进展, 2011, 41(4): 462.XIE Yimin, HUANG Xiaodong, ZUO Zhihao, et al. Recent development of evolutionary structural optimization (ESO) and bidirectional evolutionary structural optimization (BESO) methods[J]. Advances in Mechanics, 2011, 41(4): 462.
    [20] SHOBEIRI V. Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method[J]. Engineering Optimization, 2016, 48(3): 380.
    [21] PACURAR R, PACURAR A. Topology optimization of an airplane component to be made by selective laser melting technology[J]. Applied Mechanics and Materials, 2015, 808: 181.
    [22] BERROCAL L, FERNANDEZ R, GONZALEZ S, et al. Topology optimization and additive manufacturing for aerospace components[J]. Progress in Additive Manufacturing, 2019, 4(2): 83.
    [23] OLIVEIRA J, TEIXEIRA P, LOBO G, et al. Topology optimization of a car seat frame[J]. Key Engineering Materials, 2013, 554/557: 681.
    [24] 陈远帆, 李舜酩, 苏玉青. 拓扑优化与尺寸优化相结合的割草车车架轻量化设计[J]. 重庆理工大学学报(自然科学版), 2017, 31(1): 28.CHEN Yuanfan, LI Shunming, SUN Yuqing, et al. The light-weight design of the cutting grass car frame combined the topology optimization with the size optimization[J]. Journal of Chongqing University of Technology(Natural Science), 2017, 31(1): 28.
    [25] LIEW A, LOPEZ D L, MELE T V, et al. Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor[J]. Engineering Structures, 2017, 137: 323.
    [26] HU C, WENG X, ZHANG J, et al. Experimental study on fatigue strength of airport concrete pavement slab[J]. Construction and Building Materials, 2021, 270: 121493.
    [27] BIJLSMA T, HENDRIKS T. A fail-operational truck platooning architecture[C]//2017 IEEE Intelligent Vehicles Symposium (Ⅳ). Los Angeles: IEEE, 2017: 1819-1826.
    [28] BIJLSMA T, HENDRIKS T, VISSERS J, et al. In-vehicle architectures for truck platooning: the challenges to reach sae automation level 3[C]// ITS World Congress. Melbourne: IEEE, 2016: 10-14.
    [29] 陈昊昱, EDWARD G, 李琛琛, 等. 刚性铺面的平衡刚度设计理念与原型结构[J]. 同济大学学报(自然科学版), 2022, 50(9): 1303.CHEN Haoyu, EDWARD G , LI Chenchen, et al. Balance-stiffness design concept and prototype structure of rigid pavement[J]. Journal of Tongji University(Natural Science), 2022, 50(9): 1303.
    引证文献
引用本文

高达辰,赵鸿铎,马鲁宽,陈昊昱,成可.面向货车编队的水泥混凝土路面结构拓扑优化设计及验证[J].同济大学学报(自然科学版),2023,51(11):1725~1734

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-15
  • 在线发布日期: 2023-12-01
文章二维码