基于改进型Stackelberg博弈的自动驾驶测试数据定价模型
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 法学院,上海 200092

作者简介:

涂辉招(1977—),男,教授,博士生导师,工学博士,主要研究方向为自动驾驶与智能交通,交通风险管理等。E-mail:huizhaotu@tongji.edu.cn

通讯作者:

遇泽洋(1997—),男,工学硕士,主要研究方向为自动驾驶道路测试风险评估,自动驾驶测试数据资产评估管理。 E-mail:yuzeyang@tongji.edu.cn

中图分类号:

U495

基金项目:

国家重点研发计划(2019YFE0108300);国家自然科学基金(71971162);中央高校基本科研业务费专项资金(2022-5-YB-07)


Pricing Model of Autonomous Vehicle Testing Data Based on Evolved Stackelberg Game
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Law School of Tongji University,Shanghai 200092,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自动驾驶测试数据兼具连续与离散变量,且包含时间戳和经纬度等间接信息特征的特点,利用特征挖掘过滤、连续变量离散化、驾驶模式加权等方法对传统信息熵方法进行适应性调整,提出基于特征工程的驾驶模式加权信息熵方法,确定自动驾驶测试数据信息量;引入信息量构建数据消费者效用方程,提出考虑信息量和平台利润率约束的改进型Stackelberg博弈数据定价模型。以上海市自动驾驶实际测试数据开展典型案例分析,结果表明,基于改进型Stackelberg博弈的数据定价模型可有效评估数据信息量,合理分配数据生产者、数据平台和数据消费者交易三方的利润率,并显著提升数据交易量和数据交易三方总效用,从而增强自动驾驶测试数据交易市场的活力。

    Abstract:

    Autonomous vehicle (AV) testing data is characterized by containing both continuous and discrete variables, and indirect information including timestamps, latitude and longitude, etc., for which the traditional information entropy method should be adapted to AV testing data analyses. This paper proposes a driving mode-weighted information entropy method to determine the amount of AV testing data information by adapting the traditional entropy method using data feature mining and filtering, continuous variable discretization, driving mode-weighting, etc. Then, it establishes an AV testing data pricing model based on an evolved Stackelberg game with constraints of both information amount and data trading-platform profit rate, by integrating the information amount into the utility function of data consumers. It conducts a typical case analysis based on the actual test data of AV road testing in Shanghai. The results show that the evolved Stackelberg game-based pricing model can effectively evaluate the information amount of AV testing data, and reasonably allocate the profits among the three stakeholders of data providers, data trading platform, and data consumers. The data trading volume and the total utility of the system could be increased significantly, which contributes substantially to the booming of the AV testing data trading market.

    参考文献
    相似文献
    引证文献
引用本文

涂辉招,刘建泉,遇泽洋,李浩,郭新宇,张韬略,孙立军.基于改进型Stackelberg博弈的自动驾驶测试数据定价模型[J].同济大学学报(自然科学版),2023,51(11):1735~1744

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-01
  • 出版日期: