不同配合比下玄武岩纤维水泥砂浆的流动度及力学性能
CSTR:
作者:
作者单位:

1.西南交通大学 桥梁工程系,四川 成都 610031;2.西南交通大学 土木工程材料研究所,四川 成都 610031;3.四川康藏路桥有限责任公司,四川 雅安 625000

作者简介:

占玉林(1978—),男,教授,博士生导师,工学博士,主要研究方向为混凝土及钢-混凝土组合结构桥梁。 E-mail: yulinzhan@swjtu.edu.cn

通讯作者:

斯睿哲(1991—),男,助理研究员,哲学博士,主要研究方向为水泥基材料力学性能及耐久性。 E-mail: ruizhesi@swjtu.edu.cn

中图分类号:

TU528.58

基金项目:

国家自然科学基金(52278220);四川省科技计划(2021JDTD0012);四川省留学回国人员科技活动项目(川人社办发〔2021〕29号)


Fluidity and Mechanical Properties of Basalt Fiber Reinforced Cement Mortar at Different Mixing Ratios
Author:
Affiliation:

1.Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China;2.Institute of Civil Engineering Materials, Southwest Jiaotong University, Chengdu 610031, China;3.Sichuan Kangzang Road and Bridge Co., Ltd., Ya’an 625000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究玄武岩纤维增强水泥砂浆(Basalt Fiber Reinforced Cement Mortar,BFRCM)在不同配合比下的流动度和力学性能,通过改变水灰比、长短纤维混掺比例及添加减水剂来改变配合比,设计了2种纤维长径比、7种玄武岩纤维体积分数、3种水灰比、3种减水剂质量分数共制备了14组BFRCM试样。研究了不同配合比下BFRCM的流动度、抗压强度及抗折强度,通过峰值荷载后BFRCM的荷载-位移曲线的归一化处理量化分析了试样断裂后BFRCM的断裂韧性。结果表明,BFRCM的流动度随着玄武岩纤维体积分数的增加、水灰比的降低、减水剂的减少以及短纤维占比的增加而降低。水灰比的增加对BFRCM的抗压强度影响较小,且会降低其抗折强度。减水剂的应用对BFRCM的抗压、抗折强度存在一定的负面影响。长短玄武岩纤维的混掺能够通过其协同效应有效提升BFRCM的抗压和抗折强度,然而过多的短纤维占比会减弱玄武岩纤维对BFRCM的增强效果。增加玄武岩纤维体积分数、 提高水灰比均能在一定范围内提升BFRCM峰值荷载后的断裂韧性。然而,长短纤维混掺中短纤维占比的增加和减水剂的应用则对BFRCM峰值荷载后的断裂韧性产生负面影响。

    Abstract:

    To investigate the fluidity and mechanical properties of basalt fiber reinforced cement mortar (BFRCM) at different mixing ratios, the mixing ratio of BFRCM was adjusted by changing the water-cement ratio, the contents of water reducers, and the mixing ratios of long and short fibers. Fourteen groups of BFRCM samples were prepared by using 2 kinds of fiber aspect ratios, 7 kinds of basalt fiber volume dosages, 3 kinds of water-cement ratios, and 3 dosages of water-reducing agents. The fluidity, compressive strength, and flexural strength of the BFRCM at different mix ratios were analyzed, the load-displacement curve of the BFRCM after peak load was normalized, and the fracture toughness of the BFRCM after specimen fracture was quantitatively analyzed. The results show that the fluidity of the BFRCM decreases with increasing basalt fiber content, decreasing water-cement ratio, decreasing water reducer, and increasing short fiber proportion. The increase in the water-cement ratio has little effect on the compressive strength of the BFRCM but reduces its flexural strength. The application of the water-reducing agent has a certain negative impact on the compressive and flexural strength of the BFRCM. The blending of long and short basalt fibers can effectively improve the compressive and flexural strength of the BFRCM through its synergistic effect, but too much short fibers can weaken the strengthening effect of basalt fibers on the BFRCM. Increasing the content of basalt fiber and the water-cement ratio can improve the fracture toughness of the BFRCM after peak load within a certain range. However, the increase in short fiber ratios and the application of water-reducing agents negatively affect the fracture toughness of the BFRCM after peak load.

    参考文献
    [1] CORY H, HATEM M, ADEL E, et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials, 2015, 96(15): 37.
    [2] ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pretension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites, 2019, 96: 33.
    [3] ARSLAN M E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement[J]. Construction & Building Materials, 2016, 114(1): 383.
    [4] SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B: Engineering, 2005, 36(6): 504.
    [5] 吴晓斌. 玄武岩纤维在土木工程中的应用研究进展[J]. 硅酸盐通报, 2020, 39(4): 1043.WU Xiaobin. Application research progress of basalt fiber in civil engineering [J]. Silicate Bulletin, 2020, 39(4): 1043.
    [6] KOGAN F M, NIKITINA O V. Solubility of chrysotile asbestosand basalt fibers in relation to their fibrogenic and carcino-genic action[J]. Environ Health Perspect, 1994, 102 (5): 205.
    [7] MCONNELL E E, KANSTRUP O, MUSSELMAN R. Chronic inhalation study of size separated rock and slag wool insulation fibers in fischer 344/N[J]. Inhalat Toxicol, 1994, 6(6): 571.
    [8] 成涛华, 李玉香. 玄武岩纤维增强混凝土力学性能研究[J]. 混凝土与水泥制品, 2017(1): 53.CHENG Taohua, LI Yuxiang. Study on mechanical properties of basalt fiber reinforced concrete [J]. Concrete and Cement Products, 2017(1): 53.
    [9] SADRMOMTAZI A, TAHMOURESI B, SARADAR A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)[J]. Construction & Building Materials, 2018,162: 321.
    [10] 李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017(2): 727.LI Jian. Effects of chopped basalt fiber on mechanical properties and microstructure of slag fly ash concrete [J]. Silicate Bulletin, 2017(2): 727.
    [11] 赵碧华, 刘永胜, 何松华, 等. 玄武岩纤维参数对水泥砂浆流动性的影响[J]. 武汉理工大学学报, 2009,31(7): 5.ZHAO Bihua, LIU Yongsheng, HE Songhua, et al. The effects of basalt fiber parameter on the fluidity of cement mortar [J]. Journal of Wuhan University of Technology, 2009, 31(7): 5.
    [12] RAMAKRISHNAN V, TOLMARE N S, BRIK V B. Performance evaluation of 3-D basalt fiber reinforced concrete & basalt rod reinforced concrete[EB/OL]. [2023-02-01]. https://onlinepubs.trb.org/onlinepubs/archive/studies/idea/finalreports/highway/NCHRP045_Final_Report.pdf.
    [13] SUN X, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials, 2019, 202: 58.
    [14] WANG D L, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464.
    [15] RAMESH B, ESWARI S. Mechanical behavior of basalt fiber reinforced concrete: an experimental study[J]. Materials Today: Proceedings, 2021, 43: 2317.
    [16] 唐明, 杨欢. 玄武岩纤维增强水泥基复合材料研究[J].混凝土, 2010(5): 76.TANG Ming, YANG Huan. Research on basalt fiber reinforced cementitious composites[J]. Concrete, 2010(5): 76.
    [17] 何顺爱, 郑召, 李玉香. 玄武岩纤维在水泥砂浆结构优化中的尺度效应[J]. 混凝土, 2016, 6: 110.HE Shunai, ZHENG Zhao, LI Yuxiang. The scale effect of basalt fiber in the optimization of cement mortar structure [J]. Concrete, 2016, 6: 110.
    [18] WU Z M, SHI C J, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials, 2016, 103: 8.
    [19] ZHANG K, PAN L S, LI J C, et al. How does adsorption behavior of polycarboxylate superplasticizer effect rheology and flowability of cement paste with polypropylene fiber [J]. Cement and Concrete Composites, 2019, 95: 228.
    [20] QIU J P, GUO Z B, YANG L, et al. Effects of packing density and water film thickness on the fluidity behavior of cemented paste backfill[J]. Powder Technology, 2020, 359: 27.
    [21] RALEGAONKAR R, GAVALI H, ASWATHA P, et al. Application of chopped basalt fibers in reinforced mortar: A review[J]. Construction and Building Materials, 2018, 164: 589.
    [22] 李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419.LI Fuhai, GAO Hao, TANG Huiqi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete [J]. Journal of Railway Science and Engineering, 2022, 19(2): 419.
    [23] KHAN M, CAO M L. Effect of hybrid basalt fiber length and content on properties of cementitious composites[J]. Magazine of Concrete Research, 2021, 73(10): 487.
    [24] 牛恒茂,武文红,邢永明,等. 水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J]. 复合材料学报, 2015, 32(4): 1067.NIU Hengmao, WU Wenhong, XING Yongming, et al. Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J]. Journal of Composite Materials, 2015, 32(4): 1067.
    [25] FANTILLI A P, SICARDI S, DOTTI F. The use of wool as fiber-reinforcement in cement-based mortar[J]. Construction and Building Materials, 2016, 139: 562.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

占玉林,林金根,斯睿哲,高文银,程学强.不同配合比下玄武岩纤维水泥砂浆的流动度及力学性能[J].同济大学学报(自然科学版),2023,51(12):1804~1812

复制
分享
文章指标
  • 点击次数:191
  • 下载次数: 608
  • HTML阅读次数: 1153
  • 引用次数: 0
历史
  • 收稿日期:2023-03-27
  • 在线发布日期: 2023-12-29
文章二维码