自复位学校建筑抗震韧性区域评估用数字孪生模型
CSTR:
作者:
作者单位:

马里兰大学 土木与环境工程系,公园市 20742

作者简介:

REZVAN Pooya(1981—),男,工学博士,主要研究方向为自复位钢结构、地震结构损伤分析。 E-mail: rezvan@umd.edu

中图分类号:

TU391

基金项目:

马里兰大学研究生院2021年度学生研究基金


Digital Twin Model for Regional-Scale Seismic Resilience Assessment of School Buildings with Modular Retrofit Panel System
Author:
Affiliation:

Department of Civil and Environmental Engineering, University of Maryland, College Park 20742, USA

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在区域层面上对具有自复位模块结构的学校建筑进行抗震损伤和恢复力评估研究,建立了一个基于Python语言的从结构非线性分析到损伤程度可视化演示用的数字孪生模型。Python语言也是目前通用于机器学习模型训练的编程语言,方便在该数字孪生模型中引入人工智能模型来代替结构仿真计算,通过使用实时监测地震动和结构响应数据结合人工智能模型进行区域灾害响应和功能恢复快速评估。结构损伤和恢复力分析结果(如不同地震下修复成本、修复时间、不可修复的概率等指标)通过生成 shapefile在地理信息系统(GIS)软件中进行三维可视化,从而对采用自复位模块结构的学校建筑结构群在区域范围上进行抗震韧性定量评估。该模型的计算模块包括区域建筑结构清单生成、简化数值模型建立、地震响应非线性分析、结构响应参数生成、建筑结构易损部件定义、地震损失概率模型评估以及区域灾害损失的结果输出。这里的基于概率模型的学校建筑结构地震损失评估采用了FEMA P-58 方法,并使用了 Pelicun 软件包进行计算。以旧金山湾区近2 000栋学校建筑作为案例,对假定使用偏心支撑框架自复位结构作为抗震结构体系的学校建筑群进行了抗震韧性评估,研究了通过采用数字孪生模型对新型结构模块系统在学校建筑群区域灾害响应和功能恢复的影响。研究中使用了简化结构模型来缩短震后损伤和功能恢复仿真运算时间,同时提出了通过采用人工智能模型来实现强震后实时预测建筑群震后损失,并通过研究偏心支撑框架自复位结构体系的能量耗散比这一参数变化对学校建筑结构恢复力指标的影响,演示了采用不同的结构设计对建筑结构群在区域层面上的抗震损伤和恢复力的影响。

    Abstract:

    With the goal to develop a digital twin model with a seamless procedure for performing an intensity-based seismic resilience assessment of school buildings with self-centering modular bracing panel (SCMBP) systems on a regional scale, a computational framework comprised of sequential steps was built in the Python programming language by adopting multiple packages. The results of the analysis (e.g., repair cost, repair time, probability of irreparability, etc.) were generated in different contexts such as graphs, tables, and multiple shapefiles containing the building footprints and resilience metrics such as repair time and repair cost at different seismic intensities that could be visualized three-dimensionally in geographical information system (GIS) software to present a more intelligible quantitative evaluation of the regional seismic loss of the building inventory with a retrofit modular bracing panel system. The steps consisted of generating the building inventory, generating simplified numerical models, response history analysis (RHA),obtaining engineering demand parameters (EDPs),estimating the quantity of the vulnerable components,probabilistic seismic loss assessments, and generating the building-specific and regional outputs. The probabilistic loss assessment was performed based on the component-level FEMA P-58 methodology by adopting the Pelicun package. As a case study, the regional seismic resilience assessment of buildings equipped with SCMBP systems was conducted by performing a study of nearly two thousand school buildings in the San Francisco Bay Area with such systems. A simplified structural model for simulating the SCMBP systems was adopted to reduce the computing time of regional-scale seismic resilience evaluation while exhibiting an identical story-shear hysteretic behavior. The effect of the key parameter of the energy dissipation ratio, β, of SCMBP systems on the resilience metrics of the school buildings was studied by performing a parametric study.

    参考文献
    [1] Federal Emergency Management Agency (FEMA). Hazus 5.1- Earthquake model user guidance[EB/OL]. [2023-04-10]. https://www.fema.gov/sites/default/files/documents/fema-hazus-5.1-earthquake-model-user-guidance.pdf
    [2] Federal Emergency Management Agency (FEMA). Hazus 5.1- Earthquake model technical manual[EB/OL]. [2023-04-10]. https://www.fema.gov/sites/default/files/documents/fema_hazus-earthquake-model-technical-manual-5-1.pdf
    [3] Federal Emergency Management Agency (FEMA). Hazus 4.2- Hazus inventory technical manual[EB/OL]. [2023-04-10]. https://www.fema.gov/sites/default/files/documents/fema_hazus-inventory-technical-manual-4.2.3.pdf
    [4] SCHNEIDER P, SCHAUER B. HAZUS-its development and its future[J]. Natural Hazards Review, 2006, 7(2): 40. DOI: 10.1061/(ASCE)1527-6988(2006)7:2(40).
    [5] KIRCHER C A, WHITMAN R V, HOLMES W T. HAZUS Earthquake loss estimation methods[J]. Natural Hazards Review,2006, 7(2): 45. DOI: 10.1061/(ASCE)1527-6988(2006)7:2(45)
    [6] NEIGHBORS C, COCHRAN E, CARAS Y, et al. Sensitivity analysis of FEMA HAZUS earthquake model: case study from King County, Washington[J]. Natural Hazards Review, 2013. 14: 134. DOI: 10.1061/(ASCE)NH.1527-6996.0000089.
    [7] REMO J W F, PINTER N. Hazus-MH earthquake modeling in the central USA[J]. Natural Hazards, 2012, 63(2): 1055. DOI: 10.1007/s11069-012-0206-5.
    [8] MANGALATHU S, SOLEIMANI F, JEON J S. Bridge classes for regional seismic risk assessment: improving HAZUS models[J]. Engineering Structures, 2017, 148: 755. DOI: 10.1016/j.engstruct.2017.07.019.
    [9] ZENG X, LU X, YANG T Y, et al. Application of the FEMA-P58 methodology for regional earthquake loss prediction[J]. Natural Hazards, 2016, 83(1): 177. DOI: 10.1007/s11069-016-2307-z.
    [10] Federal Emergency Management Agency (FEMA). Seismic performance assessment of buildings volume 1: methodology FEMA P-58-1 [EB/OL]. [2023-04-10]. https://www.fema.gov/sites/default/files/documents/fema-hazus-5.1-earthquake-model-user-guidance.pdf
    [11] Federal Emergency Management Agency (FEMA). Seismic performance assessment of buildings volume 2: implementation guide FEMA P-58-2 [EB/OL]. [2023-04-10]. https://www.fema.gov/sites/default/files/documents/fema_p-58-2-se_volume2_implementation.pdf
    [12] Federal Emergency Management Agency (FEMA). Seismic performance assessment of buildings volume 3: supporting materials and background documentation FEMA P-58-3 [EB/OL]. [2023-04-10]. https://femap58.atcouncil.org/supporting-materials
    [13] LU X, HAN B, HORI M, et al. A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing [J]. Advances in Engineering Software, 2014. 70: 90. DOI: 10.1016/j.advengsoft.2014.01.010.
    [14] LU X, MCKENNA F, CHENG Q, et al. An open-source framework for regional earthquake loss estimation using the city-scale nonlinear time history analysis [J]. Earthquake Spectra, 2020, 36(2): 806. DOI: 10.1177/8755293019891724.
    [15] HU Q, XIONG F, ZHANG B, et al. Developing a novel hybrid model for seismic loss prediction of regional-scale buildings [J]. Bulletin of Earthquake Engineering,2022,20(11): 5849. DOI: 10.1007/s10518-022-01415-x.
    [16] HASHEMI A, YOUSEF-BEIK S M M, MOHAMMADI Darani F, et al. Seismic performance of a damage avoidance self-centring brace with collapse prevention mechanism [J]. Journal of Constructional Steel Research, 2019,155: 273. DOI: 10.1016/j.jcsr.2018.12.019.
    [17] BOTíN-SANABRIA D M, MIHAITA A S, PEIMBERT-GARCíA R E, et al. Digital twin technology challenges and applications: A comprehensive teview [J]. Remote Sensing,2022; 14(6): 1335. DOI: 10.3390/rs14061335.
    [18] DENG T, ZHANG K, SHEN Z J. A systematic review of a digital twin city: a new pattern of urban governance toward smart cities [J]. Journal of Management Science and Engineering,2021,6(2): 125. DOI: 10.1016/j.jmse.2021.03.003.
    [19] THELEN A, ZHANG X, FINK O, et al. A Comprehensive review of digital twin - Part 1: Modeling and twinning enabling technologies [J]. Structural and Multidisciplinary Optimization,2022,65: 354. DOI: https://doi.org/10.1007/s00158-022-03425-4.
    [20] FEMA Geospatial Resource Center. Earthquake hazard review [EB/OL]. [2023-01-29]. https://gis-fema.hub.arcgis.com/.
    [21] Esri. ArcGIS Pro [2.7.0] [EB/OL]. Redlands, CA: Esri. [2022-05-10]. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
    [22] CETINER B, WANG C, MCKENNA F, et al. NHERI-SimCenter/BRAILS: Release v3.0.0 2022 [EB/OL]. [2022-08-10]. DOI: 10.5281/zenodo.7132010.
    [23] USGS. Seismic design web service documentation [EB/OL]. [2023-01-30]. https://earthquake.usgs.gov/ws/designmaps/.
    [24] ZHU M, MCKENNA F, SCOTT M H. OpenSeesPy: Python library for the OpenSees finite element framework [J]. SoftwareX, 2018,7: 6. DOI: 10.1016/j.softx.2017.10.009.
    [25] MAZZONI S, MCKENNA F, SCOTT MH,et al. OpenSees command language manual [R]. Berkeley, Pacific Earthquake Engineering Research (PEER) Center, UC Berkeley, California. 2006.
    [26] LU X, GUAN H. Earthquake disaster simulation of civil infrastructures [M]. Singapore: Springer,2017. DOI: 10.1007/978-981-10-3087-1.
    [27] STEELMAN J S, HAJJAR J F. Influence of inelastic seismic response modeling on regional loss estimation [J]. Engineering Structures,2009,31(12): 2976. DOI: 10.1016/j.engstruct.2009.07.026.
    [28] FEMA. Quantification of building seismic performance factors P695 [R]. Washington D C: Federal Emergency Management Agency,2009.
    [29] LU X, TIAN Y, GUAN H, et al. Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis [J]. Bulletin of Earthquake Engineering ,2017,15(11): 4791. DOI: 10.1007/s10518-017-0168-9.
    [30] ZSARNóCZAY A, DEIERLEIN G G. PELICUN – A computational framework for estimating damage, loss, and community resilience [EB/OL]. [2022-06-01]. https://nheri-simcenter.github.io/pelicun/
    [31] MCCORMICK J, ABURANO H, IKENAGA M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]// Proceedings of 14th World Conference on Earthquake Engineering, Beijing.北京,International Association for Earthquake Engineering (IAEE 国际地震工程协会), 2008, 12-17.
    [32] ANAGNOS T, COMERIO M C, STEWART J P. Earthquake loss estimates and policy implications for nonductile concrete buildings in Los Angeles [J]. Earthquake Spectra,2016,32(4): 1951. DOI: 10.1193/060415EQS088M.
    [33] REZVAN P, ZHANG Y. Nonlinear seismic performance study of D-type self-centering eccentric braced frames with sliding rocking link beams [J]. Earthquake Engineering & Structural Dynamics,2022, 51(4): 875. DOI: 10.1002/eqe.3595.
    [34] REZVAN P, ZHANG Y. Seismic design and performance study of self-centering moment-resisting frames with sliding rocking beams and preloaded disc springs [J]. Earthquake Engineering & Structural Dynamics,2023. 52(7): 1983. DOI: 10.1002/eqe.3859.
    [35] AYYUB B. Practical resilience metrics for planning, design, and decision making [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering,2015. 1: 04015008. DOI: 10.1061/AJRUA6.0000826.
    [36] DIXON G. California Department of Education, California State Geoportal: California schools datasets [EB/OL]. [2023-01-30]. https://gis.data.ca.gov/datasets/CDEGIS::california-schools-2019-20/explore.
    [37] USGS. The national map - data delivery [EB/OL]. [2023-01-30]. https://www.usgs.gov/the-national-map-data-delivery.
    [38] REZVAN P. Nonlinear numerical simulation study and regional-scale seismic resilience assessment of self-centering systems with sliding rocking link beams [D]. College Park: University of Maryland,2023.
    [39] REZVAN P, ZHANG Y. Near-fault ground motion effect on self-centering modular bracing panels considering soil-structure interaction[J]. Advances in Structural Engineering,2023: 13694332231222080. DOI: 10.1177/13694332231222080.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

REZVAN Pooya,张云峰.自复位学校建筑抗震韧性区域评估用数字孪生模型[J].同济大学学报(自然科学版),2023,51(12):1879~1899

复制
分享
文章指标
  • 点击次数:194
  • 下载次数: 462
  • HTML阅读次数: 573
  • 引用次数: 0
历史
  • 收稿日期:2023-04-19
  • 在线发布日期: 2023-12-29
文章二维码