并联式混合动力发动机神经网络法转矩预测与闭环控制
作者:
作者单位:

1.同济大学 汽车学院, 上海 201804;2.上汽集团 乘用车技术中心, 上海 201804

作者简介:

楼狄明(1963—),男,教授,博士生导师,工学博士,主要研究方向混合动力发动机技术。 E-mail: loudiming@tongji.edu.cn

通讯作者:

房 亮(1988—),男,讲师,工学博士,主要研究方向为混合动力发动机技术。 E-mail: fangliang@tongji.edu.cn

中图分类号:

U464;TK402

基金项目:

“十四五”国家重点研发计划(2021YFB2500800)


Torque Estimation and Closed-Loop Control of Parallel Hybrid Engine Using ANN Method
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201804, China;2.SAIC Motor Corporation Limited, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用实际发动机的标定数据搭建了GT-Suite及Matlab/Simulink联合仿真模型,建立了基于进气和发动机状态参数的预测转矩反馈协同控制模块。对比了ANN法和现有发动机的标定脉谱插值预测(MAP)法2种方法下发动机稳态及瞬态转矩变化、升降挡等工况预测的结果误差,结果表明:稳态工况下MAP法较为可靠,低、中、高3种发动机转速下转矩预测波动小,误差比ANN法低1.31%、1.09%和1.52%;实际瞬态转矩跃变及阶跃工况下,ANN法较MAP法误差低5.62%和1.32%,升降挡工况下低1.93%和0.84%。

    Abstract:

    In this paper, a joint simulation model of GT-suite and MATLAB / Simulink was constructed by using the calibration data of the actual engine and a collaborative control module for estimated torque feedback based on intake air and engine state parameters was established. A comparison was made between the estimation results errors of the ANN method and the Map method for estimating the steady state, transient torque variation, upshift and downshift of the engine. The results show that the Map method is more reliable under steady-state conditions, and the error of ANN method is small at low, medium, and high engine speeds, with errors of 1.31%, 1.09%, and 1.52% lower than the ANN method, and the error of the ANN method is 5.62% and 1.32% lower than that of the Map method under torque transient conditions, and 1.93% and 0.84% lower than that of the Map method under lifting conditions.

    参考文献
    相似文献
    引证文献
引用本文

楼狄明,唐远贽,房亮,施雅风,张允华,仇杰,杨芾.并联式混合动力发动机神经网络法转矩预测与闭环控制[J].同济大学学报(自然科学版),2023,51(12):1949~1958

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-29
  • 出版日期:
文章二维码