一维管网与二维地表双向耦合的城市暴雨内涝模拟
CSTR:
作者:
作者单位:

1.同济大学 上海防灾救灾研究所,上海 200092;2.同济大学 城市安全风险监测预警应急管理部重点实验室,上海 200092;3.同济大学 水利工程系,上海 200092

作者简介:

郑茂辉,副研究员,理学博士,主要研究方向为城市防灾减灾。E-mail: zmh@tongji.edu.cn

通讯作者:

周念清,教授,工学博士,主要研究方向为水文水资源。E-mail: nq.zhou@tongji.edu.cn

中图分类号:

P333.2;X43

基金项目:

上海科技创新行动计划(21DZ1201205)


Simulation of Urban Rainstorm Waterlogging with Bidirectional Coupling of One-Dimensional Sewer Network and Two-Dimensional Surface
Author:
Affiliation:

1.Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China;2.Key Laboratory of Urban Safety Risk Monitoring and Early Warning of the Ministry of Emergency Management, Tongji University, Shanghai 200092, China;3.Department of Hydraulic Engineering, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为快速、准确模拟城市暴雨内涝演化过程,提出一种排水管网与上覆地表动态水力交互方法,构建了一维管网模型(SWMM)与二维水动力(LISFLOOD-FP)双向耦合的模型,解决了一维管网和二维地表的双向流量交换和时间同步难题。以上海外高桥地区为例,采用两次短历时降雨过程对耦合模型进行校准和验证,比较分析了单向、双向耦合的淹没范围与水深变化。结果表明:双向耦合模拟精度较高,在研究区具有良好的适用性;对于占比80 %以上的轻度(<0.2 m)积水区,单向、双向耦合的模拟积水面积比为1.21;对于中等(0.2~0.3 m)和重度(>0.3 m)积水区,单向耦合模拟结果趋于严重,该比值分别增至1.88和2.1。所构建的双向耦合模型能够揭示城区内涝积水、扩散及消退的全过程,可用于城市暴雨内涝推演,为内涝治理和灾害防御提供科学依据。

    Abstract:

    To quickly and accurately simulate the evolution process of urban rainstorm waterlogging, a dynamic interaction method between underground sewer network and above surface was proposed, and a bidirectional coupling model of SWMM /LISFLOOD-FP was constructed to solve the two-way flow exchange and time synchronization problems. Taking the Waigaoqiao area of Shanghai as an example, the coupling model was calibrated and verified using two short-duration rainfall processes, and the simulation results of unidirectional and bidirectional coupling models were compared and analyzed. The results show that the bidirectional coupling model has a higher simulation accuracy and a better applicability in the study area. For the mild (<0.2 m) waterlogged area that accounts for more than 80 % of the submerged area, the ratio of simulated waterlogged area between unidirectional and bidirectional coupling models is 1.21. However, for moderate (0.2-0.3 m) and heavy (>0.3 m) waterlogged areas, the unidirectional coupling simulations tend to overestimate, and the ratios increase to 1.88 and 2.1, respectively. The bidirectional coupling model can effectively reveal the whole process of urban stormwater accumulation, diffusion and regression, which can be used for urban rainstorm waterlogging simulation and inference, and provide scientific basis for waterlogging control and disaster prevention.

    参考文献
    [1] 徐宗学, 叶陈雷. 城市暴雨洪涝模拟:原理、模型与展望[J]. 水利学报, 2021, 52(4):381.XU Zhongxue, YE Chenlei. Simulation of urban flooding/waterlogging processes:Principle,models and prospects[J]. Journal of Hydraulic Engineering, 2021, 52(4):381.
    [2] 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战——II.城市雨洪模拟与管理[J]. 水科学进展, 2014, 25(5):752.SONG Xiaomeng, ZHANG Jianyun, WANG Gouqing, et al. Development and challenges of urban hydrology in a changing environment — II: Urban stormwater modeling and management[J]. Advances in Water Science, 2014, 25(5):752.
    [3] 胡蓓蓓, 周俊, 王军, 等. 基于情景模拟的天津市滨海新区2020年暴雨内涝风险评估[J]. 地理科学, 2012, 32(7):846.HU Beibei, ZHOU Jun, WANG Jun, et al. Risk assessment on rainstorm waterlogging of Tianjin Binhai New Area based on scenario simulation[J]. Scientia Geographica Sinica, 2012, 32(7):846.
    [4] LIU F, LIU X, Xu T, et al. Driving factors and risk assessment of rainstorm waterlogging in urban agglomeration areas: A case study of the Guangdong-Hong Kong-Macao greater bay area, China[J]. Water, 2021, 13(6): 770.
    [5] BABAEI S, GHAZAVI R, ERFANIAN M. Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2018, 105: 3.
    [6] TAN K M, SEOW W K, WANG C L, et al. Evaluation of performance of active, beautiful and clean (ABC) on stormwater runoff management using MIKE URBAN: A case study in a residential estate in Singapore[J]. Urban Water Journal, 2019, 16(2): 156.
    [7] YANG W, ZHANG J, MEI S, et al. Impact of antecedent dry-weather period and rainfall magnitude on the performance of low impact development practices in urban flooding and non-point pollution mitigation[J]. Journal of Cleaner Production, 2021, 320: 128946.
    [8] CHEN W, HUANG G, ZHANG H. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model[J]. Water Science & Technology, 2017, 76(11/12): 3392.
    [9] CHEN A S, HSU M H, CHEN T S, et al. An integrated inundation model for highly developed urban areas[J]. Water Science and Technology, 2005, 51(2): 221.
    [10] SEYOUM S D, VOJINOVIC Z, PRICE R K, et al. Coupled 1D and noninertia 2D flood inundation model for simulation of urban flooding[J]. Journal of Hydraulic Engineering, 2012, 138(1): 23.
    [11] LEANDRO J, MARTINS R. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries[J]. Water Science and Technology, 2016, 73(12): 3017.
    [12] 曾照洋, 王兆礼, 吴旭树, 等. 基于SWMM和LISFLOOD模型的暴雨内涝模拟研究[J]. 水力发电学报, 2017, 36(5):68.ZENG Zhaoyang, WANG Zhaoli, WU Xushu, et al. Rainstorm waterlogging simulations based on SWMM and LISFLOOD models [J]. Journal of Hydroelectric Engineering, 2017, 36(5):68.
    [13] 李鹏, 徐宗学, 赵刚, 等.基于SWMM与LISFLOOD-FP模型的城市暴雨内涝模拟——以济南市为例[J].南水北调与水利科技(中英文), 2021, 19(6):1083.LI Peng, XU Zongxue, ZHAO Gang, et al. Simulation of urban rainstorm waterlogging processes based on SWMM and LISFLOOD-FP models: Case study in Jinan City [J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(6):1083.
    [14] BATES P D, ROO A P J D. A simple raster-based model for flood inundation simulation[J]. Journal of Hydrology, 2000, 236(1/2):54.
    [15] MCDONNELL B E, RATLIFF K, TRYBY M E, et al. PySWMM: the python interface to stormwater management model (SWMM)[J]. Journal of Open Source Software, 2020, 5(52): 2292.
    [16] SADLER J M, GOODALL J L, BEHL M, et al. Leveraging open source software and parallel computing for model predictive control of urban drainage systems using EPA-SWMM5[J]. Environmental Modelling & Software, 2019, 120: 104484.
    [17] 曾照洋, 赖成光, 王兆礼, 等. 基于WCA2D与SWMM模型的城市暴雨洪涝快速模拟[J]. 水科学进展, 2020, 31(1):29.ZENG Zaoyang, LAI Chengguang, WANG Zhaoli, et al. Rapid simulation of urban rainstorm flood based on WCA2D and SWMM model [J]. Advances in Water Science, 2020, 31(1):29.
    [18] 宋晓阳, 刘绪为, 李成江, 等. 基于SWMM模型对镇江玉带河汇水区域的模拟分析[J]. 中国给水排水, 2016, 32(23):151.SONG Xiaoyang, LIU Xuwei, LI Chengjiang, et al. Simulation of Zhenjiang Yudai River catchment based on SWMM [J]. China Water &Wastewater, 2016, 32(23):151.
    [19] NEAL J, SCHUMANN G, BATES P D. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas[J]. Water Resources Research, 2012, 48(11):115.
    [20] WU X S, WANG Z L, GUO S D, et al. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China[J]. Journal of Hydrology, 2017, 547: 428.
    [21] 黄国如, 陈文杰, 喻海军. 城市洪涝水文水动力耦合模型构建与评估[J]. 水科学进展, 2021, 32(3):334.HUANG Guoru, CHEN Wenjie, YU Haijun. Construction and evaluation of an integrated hydrological and hydrodynamics urban flood model [J]. Advances in Water Science, 2021, 32(3):334.
    [22] BATES P D, HORRITT M S, FEWTRELL T J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling [J]. Journal of Hydrology, 2010, 387(1/2):33.
    [23] ROSSMAN L A, SIMON M A. Storm water management model user’s manual version 5.2[M]. Washington, D C: United States Environmental Protection Agency, 2022.
    相似文献
    引证文献
引用本文

郑茂辉,姚帅,周念清,刘俊兵.一维管网与二维地表双向耦合的城市暴雨内涝模拟[J].同济大学学报(自然科学版),2024,52(2):223~231

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-31
  • 在线发布日期: 2024-02-27
文章二维码