智能制造系统可靠性与风险评估模型
作者:
作者单位:

同济大学 机械与能源工程学院,上海 201804

作者简介:

段春艳,副教授,管理学博士,主要研究方向为智能制造与风险管理等。 E-mail: duanchunyan77@163.com

通讯作者:

张文娟,副研究员,管理学博士,主要研究方向为智能服务工程等。E-mail: 08143@tongji.edu.cn

中图分类号:

F27

基金项目:

国家自然科学基金资助项目(72171170);中央高校基本科研业务费专项资金资助(22120210535);上海市浦江人才计划资助(20PJ1413700)。


Reliability and Risk Evaluation Model for Intelligent Manufacturing Systems
Author:
Affiliation:

School of Mechanical Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对智能制造系统的可靠性与风险评估问题,提出一种基于改进失效模式与影响分析(FMEA)的智能制造系统可靠性与风险评估模型。从创新运用组合权重、逼近理想解排序法思想和模糊多准则妥协解排序法的角度对传统FMEA模型进行改进;基于逼近理想解排序法思想得到专家权重,减少了专家团队对失效模式风险因子分析过程中的个体差异;使用模糊层次分析法和熵权法分别计算风险因子的主观和客观权重,减少了风险因子确定的主观性。最后,运用围绕中心点划分(PAM)聚类算法对改进模型得到的结果进行分析,并应用于智能制造系统风险评估中,确定了智能制造系统中各失效模式的重要程度,通过比较分析验证了改进模型的有效性。

    Abstract:

    To address the problem of reliability and risk assessment of intelligent manufacturing systems, an improved failure mode and effects analysis (FMEA) model for intelligent manufacturing systems is proposed for the reliability and risk evaluation of intelligent manufacturing systems. The FMEA model is improved from the perspective of innovative use of combined weight, the idea of technique for order preference by similarity to ideal solution and fuzzy vlsekriterijumska optimizacija i kompromisno resenje. In the calculation of the weights of decision makers, the weights of decision makers are obtained based on the idea of technique for order preference by similarity to ideal solution, in which the fuzzy analytic hierarchy process is used to calculate the subjective weight of risk factors and the entropy weight method is used to calculate the objective weight of the risk factors, which reduces the subjectivity. The results obtained from the improved model are analyzed by applying partition around medoids (PAM) clustering algorithm and applied to the risk evaluation of intelligent manufacturing systems, The importance of each failure mode in the intelligent manufacturing systems is determined, and the effectiveness of the improved model is verified by comparative analysis.

    参考文献
    [1] ZHONG R Y, XU X, KLOTZ E, et al. Intelligent manufacturing in the context of industry 4.0: A review[J]. Engineering, 2017, 3(5): 616.
    [2] KANG C W, RAMZAN M B, SARKAR B, et al. Effect of inspection performance in smart manufacturing system based on human quality control system [J]. Springer London, 2018, 94(9): 4351.
    [3] LIU Q, LI X, GAO L. A novel MILP model based on the topology of a network graph for process planning in an intelligent manufacturing system[J]. Engineering, 2021, 7(6): 807.
    [4] 姚弘, 刘远, 金少英, 等. 智能生产理念下的MES层、Control层规划研究[J]. 制造业自动化, 2018, 40(2): 1.YAO Hong, LIU Yuan, JIN Shaoying, et al. The planning research of MES layer & control layer based on intelligent production concept [J]. Manufacturing Automation, 2018, 40(2): 1.
    [5] 尤建新, 邓晴文. 基于改进失效模式与后果分析的制造执行系统风险分析模型[J]. 同济大学学报(自然科学版), 2020, 48(1): 132.YOU Jianxin, DENG Qingwen. Manufacturing execution system risk analysis based on an improved failure mode and effects analysis method [J]. Journal of Tongji University (Natural Science), 2020, 48(1): 132.
    [6] LIU H C. FMEA using uncertainty theories and MCDM methods[M]. Singapore: Springer,2016.
    [7] MAHMOUDI M, MAHDIRAJI H A, JAFARNEJAD A, et al. Dynamic prioritization of equipment and critical failure modes: an interval-valued intuitionistic fuzzy condition-based model[J]. Kybernetes, 2019, 48(9): 1913.
    [8] LIU H C, YOU J X, DUAN C Y. An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment[J]. International Journal of Production Economics, 2019, 207: 163.
    [9] 尤筱玥, 雷星晖, 刘虎沉. 基于失效模式与后果分析扩展模型的外包风险分析[J]. 同济大学学报(自然科学版), 2016, 44(2): 309.YOU Xiaoyue, LEI Xinghui, LIU Huchen. Evaluation of the risk of outsourcing failure modes using interval 2-tuple linguistic FMEA model[J]. Journal of Tongji University (Natural Science), 2016, 44(2): 309.
    [10] QIN J, XI Y, PEDRYCZ W. Failure mode and effects analysis (FMEA) for risk assessment based on interval type-2 fuzzy evidential reasoning method[J]. Applied Soft Computing, 2020, 89: 106134.
    [11] KUBLER S, ROBERT J, DERIGENT W, et al. A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications[J]. Expert Systems with Applications, 2016, 65: 398.
    [12] LI H, DíAZ H, SOARES C G. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology[J]. Ocean Engineering, 2021, 234: 109261.
    [13] BA?HAN V, DEMIREL H, GUL M. An FMEA-based TOPSIS approach under single valued neutrosophic sets for maritime risk evaluation: the case of ship navigation safety[J]. Soft Computing, 2020, 24(24): 18749.
    [14] JOMTHANACHAI S, WONG W P, LIM C P. An application of data envelopment analysis and machine learning approach to risk management[J]. IEEE Access, 2021, 9: 85978.
    [15] BEHZADIAN M, OTAGHSARA S K, YAZDANI M, et al. A state-of the-art survey of TOPSIS applications[J]. Expert Systems with Applications, 2012, 39(17): 13051.
    [16] CHANG D Y. Applications of the extent analysis method on fuzzy AHP[J]. European Journal of Operational Research, 1996, 95(3): 649.
    [17] LIU H C, YOU J X, YOU X Y, et al. A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method[J]. Applied Soft Computing Journal, 2015, 28: 579.
    [18] OPRICOVIC S. Fuzzy VIKOR with an application to water resources planning[J]. Expert Systems with Applications, 2011, 38(10): 12983.
    [19] 陈志强, 刘钊, 张建辉. 聚类分析中PAM算法的分析与实现[J]. 计算机与现代化, 2003(9): 1.CHEN Zhiqiang, LIU Zhao, ZHANG Jianhui. Analysis and implementation of PAM algorithm[J]. Computer and Modernization, 2003(9): 1.
    [20] PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2): 3336.
    [21] SIAMI-IRDEMOOSA E, DINDARLOO S R, SHARIFZADEH M. Work breakdown structure (WBS) development for underground construction[J]. Automation in Construction, 2015, 58: 85.
    [22] 唐堂, 滕琳, 吴杰, 等. 全面实现数字化是通向智能制造的必由之路——解读《智能制造之路:数字化工厂》[J]. 中国机械工程, 2018, 29(3): 366.TANG Tang, TENG Lin, WU Jie, et al. Comprehensively realizing digitalization is the only way to intelligent manufacturing——Interpretation of intelligent manufacturing: The digital factory [J]. China Mechanical Engineering, 2018, 29(3): 366.
    [23] MESA International. The benefits of MES: A report from the field[R]. Pittsburgh P A: MESA International, 1997.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

段春艳,王佳洁,王皓博,张文娟.智能制造系统可靠性与风险评估模型[J].同济大学学报(自然科学版),2024,52(2):313~322

复制
分享
文章指标
  • 点击次数:237
  • 下载次数: 1110
  • HTML阅读次数: 68
  • 引用次数: 0
历史
  • 收稿日期:2022-10-17
  • 在线发布日期: 2024-02-27
文章二维码