考虑寒区隧道围岩冻结温度渐变的冻胀力解析解
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.宁波大学 岩石力学研究所,浙江 宁波 315211;3.绍兴文理学院 土木工程学院,浙江 绍兴 312000

作者简介:

曹善鹏,博士生,主要研究方向为寒区隧道和冻融岩石力学。E-mail:shanpengcao@163.com

通讯作者:

夏才初,教授,博士生导师,工学博士,主要研究方向为寒区隧道和能源地下结构。 E-mail:tjxiaccb@126.com

中图分类号:

U459.3

基金项目:

新疆维吾尔自治区重大科技专项(2020A03003-2);国家自然科学基金(51778475)


Analytical Solution for Frost Heave Force of Cold Region Tunnel Caused by Non-uniform Frost Heave of Surrounding Rock Considering Freezing Temperature Gradient
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Institute of Rock Mechanics, Ningbo University, Ningbo 315211, China;3.School of Civil Engineering Shaoxing University, Shaoxing 312000, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    为考虑寒区隧道围岩单向冻结和径向冻结温度渐变会引起的不同方向和不同冻结深度处的非均匀冻胀变形,通过引入冻胀围岩径向冻结温度Tr和平行与垂直冻结方向的非均匀冻胀系数k反映围岩的非均匀冻胀性,理论推演建立了寒区隧道冻胀力解析解,并进行了案例和影响因素分析。研究表明:忽略冻结温度渐变影响时冻胀力明显偏大,考虑冻结温度渐变可有效提高冻胀力计算的可靠性;考虑冻结温度渐变影响的冻胀力随着非均匀冻胀系数k的增大呈对数函数增大,随冻结与未冻围岩的弹性模量比E/E的增大而线性减小,且E/E越大时冻胀力产生所需围岩达到的临界k值也越大;隧道冻胀力随围岩冻结圈外径、未冻围岩弹性模量和原岩应力的增大而增大,但随衬砌内径、冻结围岩单位温度冻胀系数的增大而逐渐降低。

    Abstract:

    To account for the non-uniform frost heave deformation at different directions and freezing depths caused by the unidirectional freezing and the radial freezing temperature gradient of tunnel surrounding rock in cold regions, this study introduces the radial freezing temperature Tr and the non-uniform frost heave coefficient k in parallel and vertical freezing directions to characterize the non-uniform frost heave of the rock mass. Theoretical derivations establish an analytical solution for frost heave force in cold region tunnels, followed by a case study and analysis of influencing factors. The research reveals that neglecting the impact of freezing temperature gradient leads to a significantly overestimated frost heave force. Considering the influence of freezing temperature gradient effectively enhances the reliability of frost heave force calculations. The frost heave force, when influenced by freezing temperature gradient, increases logarithmically with the growth of the non-uniform frost heave coefficient k. Additionally, it decreases linearly with the increase in the elastic modulus ratio E/E of frozen and unfrozen surrounding rock, with larger EⅡ/EⅢ requiring a higher critical value of k to generate frost heave force. Furthermore, tunnel frost heave force increases with the enlargement of the frozen surrounding rock's outer radius, the elastic modulus of the unfrozen surrounding rock, and field stress. Conversely, it gradually decreases with the increase in the inner radius of the lining and the frost heave coefficient per unit temperature of the frozen surrounding rock.

    参考文献
    [1] ORAKOGLU M E, LIU J K, TUTUMLUER E. Frost depth prediction for seasonal freezing area in eastern turkey [J]. Cold Regions Science and Technology, 2016, 124: 118.
    [2] BARTOSIEWICZ A. Poland on the new silk road: current state and perspectives [M]. ?ód?: ?ód? University Press, 2020.
    [3] LI X L, WU W, LIU W C. Analyzing the highway accessibility in the belt and road region based on international highway transport chain [J]. Geographical Research, 2020, 39(11): 2552.
    [4] LAI J X, WANG X L, QIU J L, et al. A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in china [J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3554.
    [5] WU H, ZHONG Y J, XU W, et al. Experimental investigation of ground and air temperature fields of a cold-region road tunnel in nw china [J]. Advances in Civil Engineering, 2020, 2020(2): 4732490.
    [6] ZHAO X, ZHANG H W, LAI H P, et al. Temperature field characteristics and influencing factors on frost depth of a highway tunnel in a cold region [J]. Cold Regions Science and Technology, 2020, 179: 103141.
    [7] FENG Q, JIANG B S, ZHANG Q, et al. Reliability research on the 5cm-thick insulation layer used in the yuximolegai tunnel based on a physical model test [J]. Cold Regions Science and Technology, 2016, 124: 54.
    [8] HU Z, DING H, LAI J X, et al. The durability of shotcrete in cold region tunnel: a review [J]. Construction and Building Materials, 2018, 185: 670.
    [9] LAI J X, QIU J L, FAN H B, et al. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing [J]. Tunnelling and Underground Space Technology, 2016, 60: 56.
    [10] XIA C C, LYU Z T, WANG Y S. Advance and review on frost heaving force calculation methods in cold region tunnels [J]. China Journal of Highway and Transport, 2020, 33(5): 35.
    [11] 张祉道, 王联. 高海拔及严寒地区隧道防冻设计探讨 [J]. 现代隧道技术, 2004, 41(3): 1.ZHANG Zhidao, WANG Lian. Discussion on antifreeze design of tunnels in high altitude and severe cold regions [J]. Modern Tunnel Technology, 2004, 41(3): 1.
    [12] 王建宇, 胡元芳. 隧道衬砌冻胀压力问题研究 [J]. 冰川冻土, 2004, 26(1): 112.WANG Jianyu, HU Yuanfang. A discussion on frost-heaving force on tunnel lining [J]. Journal of Glaciology and Geocryology, 2004, 26(1): 112.
    [13] LAI Y M, WU H, WU Z W, et al. Analytical viscoelastic solution for frost force in cold-region tunnels [J]. Cold Regions Science and Technology, 2000, 31(2): 227.
    [14] 吴紫汪, 赖远明, 臧恩穆,等. 寒区隧道工程 [M]. 北京: 海洋出版社, 2003.WU Ziwang, LAI Yuanming, ZANG Enmu, et al. Tunnel engineering in cold regions [M]. Tunnel Engineering in Cold Regions, 2003.
    [15] GAO G Y, CHEN Q S, ZHANG Q S, et al. Analytical elasto-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels [J]. Cold Regions Science & Technology, 2012, 72: 50.
    [16] 覃爱民, 骆汉宾. 基于mohr-Coulomb准则寒区隧道围岩应力弹塑性解析 [J]. 地下空间与工程学报, 2018, 14(2): 395.QIN Aimin, LUO Hanbin. Analytical elasto-plastic solution for stress of surrounding rock based on mohr-coulomb criterion [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2): 395.
    [17] XIA C C, LV Z T, LI Q, et al. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels [J]. Cold Regions Science and Technology, 2018, 152: 48.
    [18] LV Z T, XIA C C, WANG Y S, et al. Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock [J]. Cold Regions Science and Technology, 2019, 163: 87.
    [19] FENG Q, FU S G, WANG C X, et al. Analytical elasto-plastic solution for frost force of cold-region tunnels considering anisotropic frost heave in the surrounding rock [J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3831.
    [20] LYU Z T, XIA C C, LIU W P. Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock [J]. Cold Regions Science and Technology, 2020, 178(4): 103117.
    [21] ZHANG J B, ZHANG X H, FU H L, et al. An analytical solution for the frost heaving force considering the freeze-thaw damage and transversely isotropic characteristics of the surrounding rock in cold-region tunnels [J]. Advances in Civil Engineering, 2020, 2020: 6654778.
    [22] 张常光, 高本贤, 单冶鹏, 等. 横观各向同性冻胀寒区隧道应力与位移的塑性统一解 [J]. 岩土工程学报, 2020, 42(10): 1825.ZHANG Changguang, GAO Benxian, SHAN Yepeng, et al. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825.
    [23] 张常光, 高本贤, 李天斌, 等. 考虑位移释放的横观各向同性冻胀寒区隧道冻胀力弹塑性解答 [J]. 岩土力学, 2021, 42(11): 1.ZHANG Changguang, GAO Benxian, LI Tianbin, et al. An elastic-plastic solution for frost heaving force of cold region tunnels considering transversely isotropic frost heave and displacement release [J]. Rock And Soil Mechanics, 2021, 42(11): 1.
    [24] HUANG S B, XIN Z K, YE Y H, et al. Study on the freeze–thaw deformation behavior of the brittle porous materials in the elastoplastic regime based on mohr-coulomb yield criterion [J]. Construction and Building Materials, 2020, 268: 121799.
    [25] 刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究 [J]. 岩石力学与工程学报, 2016, 35(10): 2000.LIU Quansheng, HUANG Shibing, KANG Yongshui, et al. Study of unfrozen water content and frost heave model for saturated rock under low temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2000.
    [26] YANG L, JIA H L, HAN L, et al. Hysteresis in the ultrasonic parameters of saturated sandstone during freezing and thawing and correlations with unfrozen water content [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1078.
    [27] KANG Y S, HOU C C, LIU B, et al. Frost deformation and a quasi-elastic-plastic-creep constitutive model for isotropic freezing rock [J]. International Journal of Geomechanics, 2020, 20(8): 04020119.
    [28] 吴家龙. 弹性力学 [M].第2版.北京: 高等教育出版社, 2011.WU Jialong. Mechanics of elasticity [M]. 2nd ed.Beijing: Higher Education Press, 2011.
    [29] 黄继辉, 夏才初, 韩常领, 等. 考虑围岩不均匀冻胀的寒区隧道冻胀力解析解[J]. 岩石力学与工程学报, 2015, 34(S2): 3766.HUANG Jihui, XIA Caichu, HAN Changling, et al. Analytical solution of tunnel frost heave force in cold region considering uneven surrounding rock frost heave [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3766.
    [30] BAI Y, SHAN R L, JU Y, et al. Study on the mechanical properties and damage constitutive model of frozen weakly cemented red sandstone [J]. Cold Regions Science and Technology, 2020, 171: 102980
    [31] XIA Caichu, LI Qiang, LIU Zhitao , et al. Comparative experimental study on frost deformation characteristics of saturated rock under uniform freezing and uni-directional freezing conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 274.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹善鹏,夏才初,周舒威,寇继生.考虑寒区隧道围岩冻结温度渐变的冻胀力解析解[J].同济大学学报(自然科学版),2024,52(3):360~369

复制
分享
文章指标
  • 点击次数:135
  • 下载次数: 525
  • HTML阅读次数: 76
  • 引用次数: 0
历史
  • 收稿日期:2022-05-22
  • 在线发布日期: 2024-04-10
文章二维码