路基智能压实评价指标研究进展综述
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 民航飞行区设施耐久与运行安全重点实验室,上海 201804;3.江西省高速公路投资集团有限责任公司,江西 南昌 330025;4.上海市政工程设计研究总院(集团)有限公司,上海 200092

作者简介:

钱劲松,教授,工学博士,主要研究方向为道路与机场工程。E-mail: qianjs@tongji.edu.cn

通讯作者:

中图分类号:

U416.1

基金项目:

江西省交通运输厅科技项目(2020C0002);云南省重点研发计划(202303AA080016);河北省交通运输科技项目(TH201901)


A Review of Research Progress on Intelligent Compaction Measurement Values for Subgrade
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, 201804, China;2.Key Laboratory of Durability and Operation Safety of Civil Aviation Flight Area Facilities, Tongji University, Shanghai, 201804, China;3.Jiangxi Provincial Expressway Investment Group Co. , Ltd. , Nanchang Jiangxi, 330025, China;4.Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    系统总结了智能压实评价指标(ICMV)迄今为止的主要研究成果,讨论了ICMV的发展历程、计算原理、优势与缺陷、填料适用性以及与原位指标拟合的影响因素。分析表明:ICMV与路基填料之间存在一定的匹配机制,工程上应尽量按照该机制选择ICMV以提升检测效果;拟合分析时,应综合考虑填料类型、ICMV类型和原位指标以确定影响因素,避免回归特征的冗余或缺失;鉴于部分特征对预测值存在非线性影响,不建议使用线性模型对智能压实数据进行预测。针对上述问题,本文在ICMV与填料的匹配关系、拟合因素的重要性、回归算法的选择策略三个方面给出了具体的建议及未来的研究方向,以期作为ICMV后续应用及研究的参考。

    Abstract:

    The major achievements of intelligent compaction measurement value (ICMV) are systematically summarized in this paper. The following contents of ICMV are discussed: development history, calculation mechanisms, advantages and disadvantages, filler applicability and influencing factors between ICMV and in-situ test values. The analysis indicates that there are the matching mechanisms between ICMV and subgrade materials and ICMV should be selected according to these mechanisms to improve the detection effect. During the fitting analysis, the types of subgrade ICMV and in-situ measurement values should be considered comprehensively to determine the influencing factors, so as to avoid the redundancy or the loss of regression features. Since some features have nonlinear effects on labels, it is not recommended to use linear models to predict the labels of intelligent compacted data. In view of the above problems, specific suggestions, including matching relationship between ICMV and materials, the importance of influence factors and the selection strategies of regression algorithms, are presented here in order to serve as references for the future research and application of ICMV.

    参考文献
    相似文献
    引证文献
引用本文

钱劲松,庞劲松,费伦林,郑晓光.路基智能压实评价指标研究进展综述[J].同济大学学报(自然科学版),2024,52(3):388~397

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-10
  • 出版日期:
文章二维码