基于代理遗传优化的智能驾驶系统加速测试方法
CSTR:
作者:
作者单位:

吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130022

作者简介:

朱 冰,教授,博士生导师,工学博士,主要研究方向为智能驾驶系统测试评价技术。 E-mail: zhubing@jlu.edu.cn

通讯作者:

赵 健,教授,博士生导师,工学博士,主要研究方向为汽车地面系统分析与控制。 E-mail: zhaojian@jlu.edu.cn

中图分类号:

U467.13

基金项目:

国家重点研发计划(2022YFB2503402);国家自然科学基金(U22A20247,52172386);吉林省科技发展计划(20220201023GX)


Accelerated Test Method of Intelligent Driving System Based on Surrogate Genetic Optimization Model
Author:
Affiliation:

State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于代理遗传优化的智能驾驶系统加速测试方法。首先,通过场景要素层次分析权值与优解区域特征改进参数采样模块中的拉丁超立方采样区间,实现了采样效率与优化效果的协同提升;其次,利用参数采样结果和重复度筛选机制增加遗传寻优模块的种群多样性,克服了传统遗传算法的局部收敛难题;然后,利用基于循环更新机制的代理筛选模块对场景测试结果进行预测,平衡了加速算法与代理模型应用之间的效率与精度矛盾;最后,搭建仿真平台在高维时序分解的前车变速场景下对待测智能驾驶系统进行加速测试与验证。结果表明,本文提出的方法可有效搜寻大量关键场景并提升测试效率。

    Abstract:

    This paper proposed an accelerated test method for intelligent driving system based on the surrogate genetic optimization model. First, the Latin hypercube sampling interval in the parameter sampling module was improved by using the weights and optimal solution region features of the scenario element hierarchical analysis method, achieving a synergistic improvement in sampling efficiency and optimization effect. Next, by utilizing parameter sampling results and repeatability screening mechanism, the population diversity of the genetic optimization module was increased, overcoming the local convergence problem of traditional genetic algorithms. Then, the surrogate filtering module based on cyclic update mechanism was used to predict the test results of the scenario, which balanced the contradiction between the efficiency and accuracy of the accelerated algorithm and the application of the surrogate model. Finally, a simulation platform was built to accelerate test process and verification of the intelligent driving system to be tested in the front vehicle speed change scenario of high-dimensional time series decomposition. The results indicate that the method proposed in this paper can effectively search for a large number of key scenarios and improve testing efficiency.

    参考文献
    [1] 赵树廉,来飞,李克强,等. 基于数字孪生技术的智能汽车测试方法研究[J]. 汽车工程, 2023, 45(1): 42.ZHAO Shulian, LAI Fei, LI Keqiang, et al. Research on intelligent vehicle test method based on digital twin technology [J]. Automotive Engineering, 2023, 45(1): 42.
    [2] 朱冰,张培兴,赵健,等.基于场景的自动驾驶汽车虚拟测试研究进展[J].中国公路学报,2019,32(6):1.ZHU Bing, ZHANG Peixing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles [J]. China Journal of Highway and Transport, 2019, 32(6): 1.
    [3] KALRA N, PADDOCK S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? [J]. Transportation Research Part A: Policy & Practice, 2016, 94: 182.
    [4] 邓伟文,李江坤,任秉韬,等.面向自动驾驶的仿真场景自动生成方法综述[J].中国公路学报,2022,35(1):316.DENG Weiwen, LI Jiangkun, REN Bingtao, et al. A survey on automatic simulation scenario generation methods for autonomous driving [J]. China Journal of Highway and Transport, 2022, 35(1): 316.
    [5] ZHAO D, HUANG X, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733.
    [6] FENG S, SUN H, YAN X, et al. Dense reinforcement learning for safety validation of autonomous vehicles [J]. Nature, 2023, 615: 620.
    [7] 邢星宇,吴旭阳,刘力豪,等.基于目标优化的自动驾驶决策规划系统自动化测试方法[J].同济大学学报(自然科学版), 2021,49(8):1162.XING Xingyu, WU Xuyang, LIU Lihao, et al. Automated testing method for autonomous driving decision planning system based on objective optimization [J]. Journal of Tongji University (Natural Science), 2021, 49(8): 1162.
    [8] KLüCK F, ZIMMERMANN M, WOTAWA F, et al. Genetic algorithm-based test parameter optimization for ADAS system testing [C]// 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). Sofia: IEEE, 2019: 418-425.
    [9] 张培兴,邱彬,朱冰,等. 自动驾驶系统并行加速测试方法研 究[J]. 汽车工程, 2022, 44(2): 208.ZHANG Peixing, QIU Bin, ZHU Bing, et al. Study on parallel accelerated testing method for automated driving system [J]. Automotive Engineering, 2022, 44(2): 208.
    [10] FORRESTER A I J, SOBESTER A, KEANE A J. Engineering design via surrogate modelling: a practical guide [M]. Chichester: John Wiley and Sons, 2008.
    [11] VIANA F A C, VENTER G, BALABANOV V. An algorithm for fast optimal Latin hypercube design of experiments[J]. International Journal for Numerical Methods in Engineering, 2010, 82(2):135.
    [12] ZANG S, DING M, SMITH D, et al. The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 103.
    [13] GAO F, HAN Z, ZHOU J, et al. Performance limit evaluation by evolution test with application to automatic parking system [J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 3096.
    [14] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.ZHOU Zhihua.Machine learning [M]. Beijing: Tsinghua University Press, 2016.
    [15] MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles [C]// 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). Changshu: IEEE, 2018: 1821-1827.
    [16] 段顺昌, 白先旭, 石琴, 等. 汽车自动紧急制动系统控制策略的预期功能安全设计 [J]. 汽车工程, 2022, 44(9): 1305.DUAN Shunchang, BAI Xianxu, SHI Qin, et al. Anticipated functional safety design of control strategy for automatic emergency braking system [J]. Automotive Engineering, 2022, 44(9): 1305
    [17] 中华人民共和国工业和信息化部. 乘用车自动紧急制动系 统(AEBS)性能要求及试验方法: GB/T 39901—2021[S]. 北京: 中国标准出版社, 2021.Ministry of Industry and Information Technology of the People’s Republic of China. Performance requirements and test methods for advanced emergency braking system (AEBS) for passenger car: GB/T 39901—2021[S]. Beijing: China Standard Press, 2021.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱冰,汤瑞,赵健,张培兴,李文旭.基于代理遗传优化的智能驾驶系统加速测试方法[J].同济大学学报(自然科学版),2024,52(4):501~511

复制
分享
文章指标
  • 点击次数:164
  • 下载次数: 331
  • HTML阅读次数: 1180
  • 引用次数: 0
历史
  • 收稿日期:2023-10-10
  • 在线发布日期: 2024-04-30
文章二维码