冻融条件下路基温度场和湿度场分布式感知试验
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.民航机场建设集团 西南设计研究院有限公司,四川 成都 610000;3.吉林省交通科学研究所 吉林 长春 130012

作者简介:

凌建明,教授,博士生导师,工学博士,主要研究方向为道路与机场工程。E-mail:jmling@tongji.edu.cn

通讯作者:

钱劲松,教授,博士生导师,工学博士,主要研究方向为道路与机场工程。E-mail:qianjs@tongji.edu.cn

中图分类号:

U416.1+6

基金项目:

国家重点研发计划(2018YFB1600200);吉林省交通运输科技项目(2018-1-6)


Laboratory Study on Temperature Field and Moisture Field Distributed Sensing of Subgrade in Freezing and Thawing
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Southwest Design and Research Institute Co., Ltd., CACC, Chengdu 610000, China;3.Jilin Provincial Transport Scientific Research Institute, Changchun 130012, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    搭建土体冻融多物理场感知室内试验装置,布设传统点式传感器和分布式光纤,对土体冻融过程中路基温度场、湿度场和变形情况开展试验监测,探究单端冻结、双端融化条件下土体温度场和湿度场的分布式感知特征,验证主动加热分布式光纤技术的监测效果。试验结果表明,-15 ℃单端冻结条件下,土体冻结过程按降温速率分为快速冷却、逐步降温、稳定平衡三阶段,冻结锋面逐渐下移,最大冻深约占土柱高度的35%。孔隙水受冻胀迁移力影响向冻结锋面移动,引起冻融前后土体湿度场重分布,并导致土体冻胀变形,变形量为土体最大冻深的7.8%~10.9%。分布式光纤可准确得到冻融过程中土体温度场、湿度场变化特征,识别土体内冻结区域范围,温度、湿度监测拟合优度R2分别达0.98和0.94。

    Abstract:

    In this paper, a laboratory test device for multi-physical field sensing during soil freezing and thawing was established. Traditional point sensors and distributed optical fibers were used in the test to monitor the temperature field, moisture field, and deformation of the subgrade during freezing and thawing process. Distributed sensing characteristics of the temperature and moisture fields of the soil under single-ended freezing and double-ended thawing condition were investigated, and the monitoring performance of the active heating distributed optical fiber technology was verified. The results show that, under the condition of -15 ℃ single-ended freezing, the soil freezing process is divided into three stages according to the cooling rate, i.e., the rapid cooling stage, the gradual cooling stage, and the stable equilibrium stage. The freezing front gradually moves down during freezing, and the maximum freezing depth is about 35% of the height of soil column. The pore water is affected by the frost heave migration force to the freezing front and causes the redistribution of soil moisture field before and after freezing and thawing, thus causes frost heave deformation of the soil, which accounts for 7.8 % to 10.9 % of the maximum freezing depth of soil column. The distributed optical fiber can accurately obtain the characteristics of the soil temperature and moisture fields during the freezing and thawing process, and identify the range of the freezing area in the soil. The goodness of fit R2 of temperature and moisture monitoring reaches 0.98 and 0.94, respectively.

    参考文献
    相似文献
    引证文献
引用本文

凌建明,张玉,钱劲松,吴振吉,郑纯宇.冻融条件下路基温度场和湿度场分布式感知试验[J].同济大学学报(自然科学版),2024,52(4):582~591

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码