绝热边界作用下人工冻结温度场解析解
CSTR:
作者:
作者单位:

1.中国矿业大学 力学与土木工程学院,江苏 徐州 221116;2.同济大学 土木工程学院,上海 200092;3.上海市基础工程集团有限公司,上海 200082

作者简介:

洪泽群,副教授,工学博士,主要研究方向为人工地层冻结理论与应用。E-mail:zqhong@cumt.edu.cn

中图分类号:

TU43

基金项目:

国家自然科学基金(52108386);上海市“科技创新行动计划”启明星项目扬帆专项(22YF1418300);江苏省研究生科研创新计划(KYCX23_2740)


Analytical Solution for Temperature Field of Artificial Ground Freezing Induced by Adiabatic Boundary
Author:
Affiliation:

1.School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China;3.Shanghai Foundation Engineering Group Co., Ltd., Shanghai 200082, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    隧道地下工程采用冻结法施工时经常遇到地连墙等构筑物影响冻土帷幕发展的问题,给冻结方案设计和封水效果评估带来困难,危及后续开挖作业安全。为探明地连墙等绝热边界作用下冻结温度场的分布状态,掌握冻结壁局部受限时的发展规律,建立了半无限平面内包含直线绝热边界的温度场数学模型。通过热势函数叠加结合镜像法求解了单根、2根以及3根冻结管的温度场解析解,并采用数值模拟验证了其准确性和适用性。结果表明:解析解与稳态数值解吻合较好,与瞬态数值解的误差随冻结时间延长而减小,冻结第50天3种模型的误差分别为0.39℃、0.17℃和0.06℃,均能控制在0.5℃以内;等温线在绝热边界处与边界垂直,只存在平行于边界的热流而没有法向热流,绝热边界对于其与冻结管之间区域的温度降低更加有利;随着绝热边界与冻结管距离d的增加,对冷量传递的阻断作用降低,冻结模型逐渐向无限大平面模型转化,实际工程应根据冻结壁设计厚度,合理匹配管间距l和边界距离d的取值。

    Abstract:

    The construction of underground tunnel engineering using the AGF method often encounters the problem of diaphragm walls affecting the frozen curtain development, which brings difficulties to the design of the freezing scheme and the evaluation of the sealing water effect, and endangers the safety of subsequent excavation operations. In order to find out the freezing temperature distribution under the action of adiabatic boundary such as diaphragm wall, and to grasp the development law under the local restriction of freezing curtain, a mathematical model of temperature field containing adiabatic boundary in semi-infinite plane was established. The analytical solution of single, double and triple freezing pipes were derived based on the thermal potential function and mirror method, and their accuracy and applicability were verified by numerical simulation. The results show that the analytical solution agrees well with the steady-state numerical results, the error with the transient results decreases gradually with freezing time, and the errors of three models on the 50th day are 0.39℃, 0.17℃, and 0.06℃, which can be controlled within 0.5℃. The isotherm is perpendicular to the boundary, and there is only heat flux parallel to the boundary but no normal heat flux. The adiabatic boundary is beneficial to the temperature reduction between the freezing pipes and adiabatic boundary. As the distance d increases, the effect of adiabatic boundary gradually decreases, and the freezing model transforms into an infinite model. Therefore, the pipe spacing l and boundary distance d should be reasonably matched according to the designed thickness of the frozen curtain in practical projects.

    参考文献
    [1] 陈湘生. 冻结法几个关键问题及在地下空间近接工程中最新应用[J]. 隧道建设, 2015, 35(12): 1243.CHEN Xiangsheng. Several key points of artificial ground freezing method and its latest application in China[J]. Tunnel Construction, 2015, 35(12): 1243.
    [2] 程桦. 深厚冲积层冻结法凿井理论与技术[M]. 北京:科学技术出版社,2016.CHENG Hua. Freezing method and technology of deep alluvium[M]. Beijing: Science and technology of China press, 2016.
    [3] ANDERSLAND O, LADANYI B. Frozen ground engineering[M]. New Jersey: Wiley, 2004.
    [4] CASINI F, GENS A, OLIVELLA S. Artificial ground freezing of a volcanic ash: laboratory tests and modelling[J]. Environmental Geotechnics, 2014, 3(3): 141.
    [5] VITEL M, ROUABHI A, TIJANI M, et al. Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities[J]. Computers and Geotechnics, 2015, 63: 99.
    [6] RODRIGUES J. Steady state solutions to a multi-dimensional phase change problem in ground freezing [M]. Luxembourg: Springer, 1999.
    [7] 郭晓东. 直线型排管稳态温度场解析解实用型研究[D]. 上海: 同济大学, 2016.GUO Xiaodong. Research on the practicality of analytical solution to steady-state temperature field by row-piped freezing[D]. Shanghai: Tongji University, 2016.
    [8] Н ТРУПАК . Замораживание горных пород при проходке стволов[M]. Москва: Углетехиздат,1954.
    [9] Б БАХОЛДИН . Выбор оптимального режима замораживания грунтов в строительных целях[M]. Москва: Госстройиздат, 1963.
    [10] SANGER F. Ground freezing in construction[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94 (1): 131.
    [11] TOBE N, AKIMOTO O. Temperature distribution formula in frozen soil and its application[J]. Refrigeration, 1979, 54(622):3.
    [12] 周晓敏,王梦恕,张绪忠. 渗流作用下地层冻结壁形成的模型试验研究[J]. 煤炭学报, 2005, 30(2): 196.ZHOU Xiaomin,WANG Mengshu,ZHANG Xuzhong. Model test research on the formation of freezing wall in seepage ground[J]. Journal of China Coal Society, 2005, 30(2): 196.
    [13] 荣传新,王彬,程桦,等.大流速渗透地层人工冻结壁形成机制室内模型试验研究[J]. 岩石力学与工程学报, 2022, 41(3): 596.RONG Chuanxin, WANG Bin, CHENG Hua, et al. Laboratory model test study on formation mechanism of artificial frozen wall in permeable stratum with high seepage velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 596.
    [14] WANG B, RONG C, CHENG H, et al. Temporal and spatial evolution of temperature field of single freezing pipe in large velocity infiltration configuration[J]. Cold Regions Science and Technology, 2020, 175:103080.
    [15] WANG B, RONG C, CHENG H, et al. Analytical solution of steady-state temperature field of single freezing pipe under action of seepage field[J]. Advances in Civil Engineering, 2020, 3:1
    [16] 胡向东, 赵飞, 佘思源, 等. 直线双排管冻结壁平均温度的等效抛物弓形模型[J]. 煤炭学报, 2012, 37(1): 28.HU Xiangdong, ZHAO Fei, SHE Siyuan, et al. Equivalent parabolic arch method of average temperature calculation for straight double-row- pipe frozen soil wall [J]. Journal of China Coal Society, 2012, 37(1): 28.
    [17] HU Xiangdong, GUO Wang, ZHANG Luoyu, et al. Mathematical models of steady-state temperature fields produced by multipiped freezing[J]. Journal of Zhejiang University, 2016, 17(9): 702.
    [18] 胡向东, 韩延广, 虞兴福. 双排管冻结稳态温度场广义解析解[J]. 同济大学学报(自然科学版), 2015, 43(3): 386.HU Xiangdong, HAN Yanguang, YU Xingfu. Generalized analytical solution to steady-state temperature field of double-row-pipe freezing[J]. Journal of Tongji University (Natural Science), 2015, 43(3): 386.
    [19] HONG Zequn, HU Xiangdong, FANG Tao. Analytical solution to steady-state temperature field of freeze-sealing pipe roof applied to Gongbei tunnel considering operation of limiting tubes[J]. Tunnelling and Underground Space Technology, 2020, 105(6): 103571.
    [20] 余占奎, 黄宏伟, 王如路,等. 人工冻结技术在上海地铁施工中的应用[J]. 冰川冻土, 2005, 27(4): 550.YU Zhankui, HUANG Hongwei, WANG Rulu, et al. Application of artificial freezing technology in Shanghai metro construction[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 550.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪泽群,付硕任,胡向东,王宝生.绝热边界作用下人工冻结温度场解析解[J].同济大学学报(自然科学版),2024,52(5):749~758

复制
分享
文章指标
  • 点击次数:139
  • 下载次数: 293
  • HTML阅读次数: 42
  • 引用次数: 0
历史
  • 收稿日期:2022-07-15
  • 在线发布日期: 2024-05-24
文章二维码