稀燃条件下甲烷-空气预混射流的着火特性
CSTR:
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

于 洋,博士生,主要研究方向为内燃机燃烧与排放控制。E-mail: 1710978@tongji.edu.cn

通讯作者:

吴志军,教授,博士生导师,工学博士,主要研究方向为内燃机燃烧与排放控制。 E-mail: zjwu@tongji.edu.cn

中图分类号:

TK464

基金项目:

国家自然科学基金(51576141)


Lean-Burn Ignition Characteristics of Methane/Air Premixed Jet
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于可控热氛围燃烧试验系统,探究射流当量比、射流速率和协流速率对甲烷-空气预混射流着火特性的影响。根据试验规律对天然气发动机稀薄燃烧的控制策略提出优化建议,以减少失火现象的发生。结果表明:随着协流温度的升高,甲烷-空气预混射流的稀燃极限降低而富燃极限升高,符合大多数碳氢燃料预混合气的着火界限分布规律。不同的射流速率和协流速率下均存在临界当量比,当低于临界当量比时,着火温度随射流当量比的升高而显著降低,当高于临界当量比时,着火温度趋于稳定。在较低的射流当量比工况(0.20 ~ 0.62)下,提高射流速率可以降低着火温度从而优化着火性能。

    Abstract:

    The effects of jet equivalence ratio, jet velocity, and co-flow velocity on the ignition characteristics of methane/air premixed jet were investigated on a controllable thermal-atmosphere combustion experimental system. According to the experimental law, the optimization suggestions for the lean-burn control strategy of natural gas engines were proposed to reduce the occurrence of the misfire. The results show that the lean limit of methane/air premixed jet decreases and the rich limit increases as co-flow temperature rises, which is consistent with the distribution of ignition limits of most hydrocarbon fuel premixes. Besides, there are different critical equivalence ratios at different jet velocities and co-flow velocities, below which the ignition temperature decreases sharply with the increase of jet equivalence ratio. Moreover, at a lower jet equivalence ratio (0.20~0.62), the improvement in jet velocity can reduce the ignition temperature and optimize the ignition characteristics.

    参考文献
    [1] 陈玲华. 中国汽车企业的碳中和战略——目标、路径与举措[J]. 北京汽车, 2022(2): 9. DOI: 10.14175/j.issn.1002-4581.2022.02.003.CHEN Linghua. The carbon neutral and strategic goals, paths and measures of Chinese automobile companies[J]. Beijing Automotive Engineering, 2022(2): 9. DOI: 10.14175/j.issn.1002-4581.2022.02.003.
    [2] 张韧. 基于光学发动机的天然气稀薄燃烧特性实验研究[D]. 天津:天津大学, 2019.ZHANG Ren. Experimental Study on Lean Combustion Characteristics of Natural Gas Based on Optical Engine[D]. Tianjing: Tianjing University. 2019.
    [3] 王利民, 卫海桥, 潘家营,等. 天然气-汽油双燃料发动机燃烧特性试验研究[J]. 内燃机工程, 2018, 10(5): 39.DOI: 10.13949/j.cnki.nrjgc.2018.05.006.WANG Limin, WEI Haiqiao, PAN Jiaying, et al. Experimental investigations into combustion characteristics of natural gas-gasoline dual-fuel engines [J]. Chinese Internal Combustion Engine Engineering, 2018, 10(5): 39.DOI: 10.13949/j.cnki.nrjgc.2018.05.006.
    [4] GRAHAM L A, RIDEOUT G, ROSENBLATT D, et al. Greenhouse gas emissions from heavy-duty vehicles[J]. Atmospheric Environment, 2008, 42(19): 4665. DOI: 10.1016/j.atmosenv.2008.01.049.
    [5] 蒋德明. 内燃机燃烧与排放学[M]. 西安:西安交通大学出版社, 2001.JIANG Deming. Combustion and emission of internal combustion engines[M]. Xi'an: Xi'an Jiaotong University Press, 2001.
    [6] 李伟峰, 刘忠长, 王忠恕, 等. N2和CO2稀释对天然气发动机燃烧和NOx排放的影响[J]. 吉林大学学报: 工学版, 2015, 45(4): 1116. DOI: 10.13229/j.cnki.jdxbgxb201504014.LI Weifeng, LIU Zhongchang, WANG Zhongshu, et al. Effects of N2 and CO2 dilution on the combustion and NOx emissions of natural gas engines[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(4): 1116.DOI: 10.13229/j.cnki.jdxbgxb201504014.
    [7] 马凡华, 王宇, 刘海全, 等. 稀燃天然气掺氢发动机的热效率与排放特性[J]. 内燃机学报, 2008, 26(1): 44.DOI: 10.3321/j.issn:1000-0909.2008.01.006.MA Fanhua, WANG Yu, LIU Haiquan, et al. Thermal efficiency and emission characteristics of a lean burn HCNG engine[J]. Transactions of CSICE, 2008, 26(1): 44. DOI: 10.3321/j.issn:1000-0909.2008.01.006.
    [8] IORIO S D, SEMENTA P, VAGLIECO B M. Analysis of combustion of methane and hydrogen–methane blends in small DISI (direct injection spark ignition) engine using advanced diagnostics[J]. Energy, 2016, 108(1): 99. DOI: 10.1016/j.energy.2015.09.012.
    [9] 邵宇,何卓遥,徐震, 等. 改质缸当量比对缸内热化学燃烧模式稀燃天然气发动机燃烧性能的影响[J]. 工程热物理学报, 2018, 39(11): 2532. DOI: CNKI:SUN:GCRB.0.2018-11-030.SHAO Yu, HE Zhuoyao, XU Zhen, et al. Effects of the reforming cylinder equivalence ratio on the combustion of in-cylinder TFR lean burn natural gas engine[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2532. DOI: CNKI:SUN:GCRB.0.2018-11-030.
    [10] FU J, SHU J, ZHOU F, et al. Experimental investigation on the effects of compression ratio on in-cylinder combustion process and performance improvement of liquefied methane engine[J]. Applied Thermal Engineering, 2017, 113: 1208. DOI: 10.1016/j.applthermaleng.2016.11.048.
    [11] SONG J, CHOI M, KIM D, et al. Combustion characteristics of methane direct injection engine under various injection timings and injection pressures[J]. Journal of Engineering for Gas Turbines & Power, 2017, 139(8), 082802: 1. DOI: 10.1115/1.4035817.
    [12] RICHARDSON S, MCMILLIAN M H, WOODRUFF S D, et al. Misfire, knock and NOx mapping of a laser spark ignited single cylinder lean burn natural gas engine[J]. SAE Technical Papers, 2004, 1853: 1. DOI: 10.4271/2004-01-1853.
    [13] SRIVASTAVA D K, WINTNER E, AGARWAL A K. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine[J]. Optical Engineering, 2014, 53(5): 056120: 1. DOI: 10.1117/1.OE.53.5.056120.
    [14] LIN C, WEI H, REN Z, et al. Effects of spark plug type and ignition energy on combustion performance in an optical SI engine fueled with methane[J]. Applied Thermal Engineering, 2018, 148: 188. DOI: 10.1016/j.applthermaleng.2018.11.052.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于洋,瞿宗举,谢巍,邓俊,吴志军.稀燃条件下甲烷-空气预混射流的着火特性[J].同济大学学报(自然科学版),2024,52(5):815~821

复制
分享
文章指标
  • 点击次数:108
  • 下载次数: 347
  • HTML阅读次数: 52
  • 引用次数: 0
历史
  • 收稿日期:2022-06-15
  • 在线发布日期: 2024-05-24
文章二维码