考虑人机信任匹配的人机协同控制策略
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.吉林大学 汽车仿真与控制国家重点实验室,长春 130025;3.中佛罗里达大学 土木、环境与建筑工程系,奥兰多 32826

作者简介:

孙 剑,教授,博士生导师,工学博士,主要研究方向为交通流理论与交通仿真、自动驾驶与车路协同。 E-mail: sunjian@tongji.edu.cn

通讯作者:

岳李圣飒,助教,博士生导师,工学博士,主要研究方向为智能网联车人机交互与协同。 E-mail: 2014yuelishengsa@tongji.edu.cn

中图分类号:

U491.2

基金项目:

国家自然科学基金(52125208);上海市软科学项目(23692123300)


Human-machine Cooperative Control Strategy Considering Human-machine Trust Matching
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China;3.Department of Civil, Environment and Construction Engineering, University of Central Florida, Orlando 32826, USA

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人机互信水平是影响人机协同系统表现的关键因素之一。提出了一种考虑人机信任匹配的主从博弈协同控制策略。建立评估驾驶人和机器相互信任程度的方法,在此基础上根据人机信任匹配程度进行协同驾驶中的权重分配;采用模型预测控制框架并结合主从博弈进行最优化求解,得出最优的协同控制策略;通过驾驶人在环实验,验证了所提出的协同控制策略的有效性。结果表明,对于不同信任匹配程度的驾驶人,所提出的策略使得驾驶人路径跟踪精度平均提高了70.91%,驾驶负担平均降低了44.03%。所提出的策略能提升车辆的驾驶表现,减轻驾驶人操作负担。

    Abstract:

    The level of human-machine mutual trust is a key factor affecting the performance of human-machine cooperative systems. This paper presents a Stackelberg Game-based cooperative control strategy that considers human-machine trust matching. Firstly, a method was proposed for assessing the mutual trust level between drivers and machines. Based on this, the weight allocation in cooperative driving was performed according to the level of human-machine trust matching. Subsequently, a model predictive control framework was adopted, and the optimal cooperative control strategy was obtained by combining the Stackelberg Game theory for optimization. Finally, driver-in-the-loop experiments were conducted to validate the proposed cooperative control strategy. Results demonstrate that, for drivers with different trust matching levels, the strategy can improve the precision of path tracking by 70.91%, and reduce the driving burden by 44.03%. The proposed strategy enhances the driving performance and reduces the driver workload.

    参考文献
    相似文献
    引证文献
引用本文

孙剑,阳友康,岳李圣飒,韩嘉懿,王子衿,尹恒.考虑人机信任匹配的人机协同控制策略[J].同济大学学报(自然科学版),2024,52(6):838~845

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-28
  • 出版日期: