基于抗差自适应滤波的高速列车融合测速算法
CSTR:
作者:
作者单位:

1.西南交通大学 信息科学与技术学院,成都 611756;2.四川省列车运行控制技术工程研究中心,成都 611756;3.中国航天科技集团有限公司 交通感知雷达研发中心,上海 201109

作者简介:

王小敏,教授,博士生导师,工学博士,主要研究方向为轨道交通智能运维。 E-mail: xmwang@swjtu.edu.cn

中图分类号:

U284.7

基金项目:

中国国家铁路集团有限公司科技研究开发计划(P2021G053,N2021T008,N2021G045);上海航天科技创新基金(SAST2020-126)


Fusion Speed Measurement Algorithm of High-speed Train Based on Robust Adaptive Filter
Author:
Affiliation:

1.School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;2.Sichuan Province Train Operation Control Technology Engineering Research Center, Chengdu 611756, China;3.Traffic Sensing Radar Research and Development Center, China Aerospace Science and Technology Corporation, Shanghai 201109, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对Kalman滤波在高速列车融合测速过程中因观测粗差和动力学模型误差而引起的融合精度下降问题,提出一种基于抗差自适应滤波的高速列车融合测速算法。首先,在Kalman滤波的基础上构建异常检测函数和误差判别统计量,用于检测和区分传感器异常观测导致的观测粗差和动力学模型误差;然后,针对观测粗差和动力学模型误差,分别采用三段式函数和指数函数构造抗差因子和自适应因子,通过2种因子合理调节观测信息和模型信息在状态估计中的权重,从而降低观测粗差和动力学模型误差对融合结果的影响;最后,通过2种运行场景以及算法对比,仿真验证抗差自适应滤波算法性能。仿真结果表明,与基于Kalman滤波的融合测速算法相比,所提出算法无论在观测粗差场景还是在动力学模型误差场景,均具有更高的精度和稳定性。

    Abstract:

    A fusion speed measurement algorithm of high-speed trains based on robust adaptive filter was proposed to solve the problem that the fusion accuracy decreased due to the observation gross errors and the dynamic model errors in the fusion speed measurement using Kalman filter. Firstly, the anomaly detection function and error discrimination statistics were constructed on the basis of Kalman filter, which were used to detect and distinguish the observation gross errors and dynamic model errors caused by abnormal observations of sensors. Then, for observation gross errors and dynamic model errors, a three-segment function and an exponential function were used to construct robust factor and adaptive factor, respectively. The weights of observation information and model information in state estimation were reasonably adjusted by the two factors, so as to reduce the impact of observation gross errors and dynamic model errors on the fusion results. Finally, the performance of robust adaptive filter was verified by simulation with two operation scenes and comparison between algorithms. The simulation results show that compared with the fusion speed measurement algorithm based on Kalman filter, the proposed algorithm has higher accuracy and stability in both the observation gross errors scene and the dynamic model errors scene.

    参考文献
    [1] 莫志松, 安鸿飞. 新型列控系统列车综合自主定位技术研究[J]. 铁道学报, 2022, 44(1): 56.MO Zhisong, AN Hongfei. Research on comprehensive autonomous positioning technology of new train control system[J]. Journal of the China Railway Society, 2022, 44(1): 56.
    [2] ZHAN X M, MU Z H, RAJEEV K, et al. Research on speed sensor fusion of urban rail transit train speed ranging based on deep learning[J]. Nonlinear Engineering:Modeling and Application, 2021, 10(1): 363.
    [3] JIA Y, LI S L, QIN Y Y, et al. New vehicle positioning method based on RMINS/KC and robust adaptive KF[J]. IEEE Sensors Journal, 2018, 18(15): 6319.
    [4] MUNIANDI G, DEENADAYALAN E. Train distance and speed estimation using multi sensor data fusion[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 664.
    [5] 吴昕慧, 蔡煊, 陶汉卿. 基于多传感器的列车里程计定位误差检测及校正方法[J]. 城市轨道交通研究, 2016, 19(5): 19.WU Xinhui, CAI Xuan, TAO Hanqing. Detection and correction method of train odometer positioning error based on multi-sensor system [J]. Urban Mass Transit, 2016, 19(5): 19.
    [6] 蔡煊, 王长林. 基于抗差估计的BDS/ODO组合列车定位方法[J]. 铁道科学与工程学报, 2018, 15(10): 2654.CAI Xuan, WANG Changlin. BDS/ODO integrated train positioning method based on robust estimation[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2654.
    [7] 高学泽, 魏文军. 马尔可夫参数自适应IMM算法在列车定位中的应用[J]. 传感器与微系统, 2019, 38(1): 155.GAO Xueze, WEI Wenjun. Application of Markov parameter adaptive IMM algorithm in train positioning[J]. Transducer and Microsystem Technologies, 2019, 38(1): 155.
    [8] 肖辰彬. GPS/BD-DR组合导航系统优化设计与实现[D]. 成都: 西南交通大学, 2014.XIAO Chenbin. Optimized design and implementation of GPS/BD-DR integrated navigation system[D]. Chengdu: Southwest Jiaotong University, 2014.
    [9] 李增科, 王坚, 高井祥, 等. 自适应联邦滤波器在GPS-INS-Odometer组合导航的应用[J]. 测绘学报, 2016, 45(2): 157.LI Zengke, WANG Jian, GAO Jingxiang, et al. The application of adaptive federated filter in GPS-INS-Odometer integrated navigation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 157.
    [10] KIM K, KONG S H, JEON S Y. Slip and slide detection and adaptive information sharing algorithms for high-speed train navigation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3193.
    [11] LIN Y, WANG D M, ZHANG W B. Research on speed and distance measurement algorithm based on multi-sensor information fusion[C]// 6th International Conference on Energy, Environment and Sustainable Development. Paris: Atlantis Press, 2017: 265-273.
    [12] 蔡煊, 王长林, 林颖. 基于轮轴速度传感器和加速度传感器的混合测速测距算法研究[J]. 城市轨道交通研究, 2015, 18(3): 32.CAI Xuan, WANG Changlin, LIN Ying. Mixed speed and distance ranging algorithm based on odometer and accelerometer[J]. Urban Mass Transit, 2015, 18(3): 32.
    [13] MA W T, QIU J Z, LIANG J L, et al. Linear Kalman filtering algorithm with noisy control input variable[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(7): 1282.
    [14] 徐晓苏, 仲灵通. 一种基于M估计的抗差自适应多模型组合导航算法[J]. 中国惯性技术学报, 2021, 29(4): 482.XU Xiaosu, ZHONG Lingtong. Robust adaptive multiple model integrated navigation algorithm based on M-estimation[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 482.
    [15] TANG Y W, ZHAO J B, WANG M L, et al. Beidou navigation method based on intelligent computing and extended Kalman filter fusion[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 4431.
    [16] 杨元喜, 任夏, 许艳. 自适应抗差滤波理论及应用的主要进展[J]. 导航定位学报, 2013, 1(1): 9.YANG Yuanxi, REN Xia, XU Yan. Main progress pf adaptively robust filter with application in navigation[J]. Journal of Navigation and Positioning, 2013, 1(1): 9.
    [17] ZHANG Q Q, ZHAO L D, ZHAO L, et al. An improved robust adaptive Kalman filter for GNSS precise point positioning[J]. IEEE Sensors Journal, 2018, 18(10): 4176.
    [18] 石庆升, 刘帅帅, 尚庆松. 基于紧耦合GNSS/INS的高速列车精准定位研究[J]. 电子测量技术, 2022, 45(13): 7.SHI Qingsheng, LIU Shuaishuai, SHANG Qingsong. Precise positioning of high speed train based on tightly coupled GNSS/INS [J]. Electronic Measurement Technology, 2022, 45(13): 7.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王小敏,贾钰林,张亚东,魏维伟,何静.基于抗差自适应滤波的高速列车融合测速算法[J].同济大学学报(自然科学版),2024,52(6):935~942

复制
分享
文章指标
  • 点击次数:68
  • 下载次数: 234
  • HTML阅读次数: 42
  • 引用次数: 0
历史
  • 收稿日期:2022-09-11
  • 在线发布日期: 2024-06-28
文章二维码