共振型地震表面波屏障设计与性能分析
CSTR:
作者:
作者单位:

1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.清华大学 航空航天学院,北京 100081

作者简介:

宁少武,副教授,工学博士,主要研究方向为声学超材料,振动噪声控制,冲击防护。 E-mail: swning@qq.com

通讯作者:

柳占立,教授,博士生导师,工学博士,主要研究方向为计算固体力学、断裂力学、冲击动力学。 E-mail: liuzhanli@mail.tsinghua.edu.cn

中图分类号:

O328


Design and Performance Analysis of Resonant Seismic Surface Wave Barriers
Author:
Affiliation:

1.College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;2.School of Aerospace Engineering, Tsinghua University, Beijing 100081, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    周期结构的带隙特性使得位于带隙频率范围内的振动或波动无法在结构中传播。基于该思想,设计了一种埋入式的地震表面波屏障以调控Rayleigh表面波的传播,并研究了该表面波屏障的主要设计参数及共振单元与支撑基础之间的连接约束关系等对弹性波频散曲线和表面波带隙形成的影响。结果表明:该埋入式的地震表面波屏障能够形成低频的表面波带隙,实现有效的衰减域;共振单元与支撑基础之间的约束关系会显著改变地震表面波屏障的频散曲线,不同的约束条件会影响表面波带隙的形成,甚至造成带隙的消失,在屏障设计与实现过程中应对影响两者发生相对运动的因素如摩擦力等进行考虑,进行合理设计。

    Abstract:

    A periodic structure has band-gap characteristics so that the vibrations or waves in the band-gap frequency range cannot propagate in the structure. Based on this concept, an embedded seismic barrier for manipulating Rayleigh surface waves is designed. The influence of the design parameters of the seismic barrier and the constraint conditions between the resonant element and the supporting foundation on the elastic wave dispersion curve and the formation of the bandgaps of seismic surface wave is studied. The results indicate that the embedded seismic metamaterial barrier can form a surface wave band gap in the low frequency region and realize an effective attenuation domain. The constraint conditions between the resonant element and the supporting foundation can significantly alter the band structure of the dispersion curve. Different constraint conditions can affect the formation of the surface wave bandgaps, and even cause the disappearance of the surface wave bandgaps. Thus, in the process of barrier design and implementation, factors, such as friction, that affect the relative movement between the resonant element and the supporting foundation should be considered and rationally designed.

    参考文献
    [1] 魏培君. 弹性波理论[M]. 北京: 科学出版社, 2021.WEI Peijun. Elastic wave theory[M]. Beijing: Science Press, 2021.
    [2] 温熙森, 温激鸿, 郁殿龙, 等. 声子晶体[M]. 北京: 国防工业出版社, 2009.WEN Xisen, WEN Jihong, YU Dianlong, et al. Phononic Crystals[M]. BeiJing: National Defense Industry Press, 2009.
    [3] 陈振宇, 林志华, 施帆. 地震超材料: 从自然结构到新型人工结构[J]. 科学通报, 2022, 67(12): 1264.CHEN Zhenyu, LIN Zhihua, SHI Fan. A review on seismic metamaterials: From natural to artificial structures[J]. Chinese Science Bulletin, 2022, 67(12): 1264.
    [4] BRULE S, JAVELAUD E, ENOCH S, et al. Experiments on seismic metamaterials: Molding surface waves[J]. Physical Review Letter, 2014, 112: 133901.
    [5] COLOMBI A, ROUX P, GUENNEAU S, et al. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances[J]. Scientific Reports, 2016, 6: 19238.
    [6] COLOMBI A, COLQUITT D, ROUX P, et al. A seismic metamaterial: The resonant metawedge[J]. Scientific Reports, 2016, 6: 27717.
    [7] COLQUITT D, COLOMBI A, CRASTER R, et al. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction[J]. Journal of the Mechanics and Physics of Solids, 2017, 99: 379.
    [8] WOOTTON P, KAPLUNOV J, COLQUITT D. An asymptotic hyperbolic — Elliptic model for flexural-seismic metasurfaces[J]. Proceedings of the Royal Society A, 2019, 475: 20190079.
    [9] PU X, PALERMO A, MARZANI A. A multiple scattering formulation for finite-size flexural metasurfaces[J]. Proceedings of the Royal Society A, 2022, 478: 20210669.
    [10] LIU W, YOON G, YI B, et al. Ultra-wide band gap metasurfaces for controlling seismic surface waves[J]. Extreme Mechanics Letters, 2020, 41: 101018.
    [11] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S): 324.LIU Yanzhao, YIN Shoufu, YU Guilan. Design and investigation of periodic grid barriers for seismic surface waves[J]. Engineering Mechanics, 2019, 36(S): 324.
    [12] PALERMO A, MARZANI A. Control of Love waves by resonant metasurfaces[J]. Scientific Reports, 2018, 8: 7234.
    [13] PALERMO A, VITALI M, MARZANI A. Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 265.
    [14] ACHAOUI Y, ANTONAKAKIS T, Brule S, et al. Clamped seismic metamaterials: Ultra-low frequency stop bands[J]. New Journal of Physics, 2017, 191719: 063022.
    [15] CHEN Y, QIAN F, SCARPA F, et al. Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps[J]. Materials and Design, 2019, 175: 107813.
    [16] WANG X, WAN S, NIAN Y, et al. Periodic in-filled pipes embedded in semi-infinite space as seismic metamaterials for filtering ultra-low-frequency surface waves[J]. Construction and Building Materials, 2021, 313: 125498.
    [17] CAI R, JIN Y B, RABCZUK T, et al. Propagation and attenuation of Rayleigh and pseudo surface waves in viscoelastic metamaterials[J]. Journal of Applied Physics, 2021, 129: 124903.
    [18] PU X, SHI Z. A novel method for identifying surface waves in periodic structures[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 67.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宁少武,金园园,施汇斌,柳占立.共振型地震表面波屏障设计与性能分析[J].同济大学学报(自然科学版),2024,52(7):1009~1017

复制
分享
文章指标
  • 点击次数:79
  • 下载次数: 263
  • HTML阅读次数: 1030
  • 引用次数: 0
历史
  • 收稿日期:2023-11-24
  • 在线发布日期: 2024-07-30
文章二维码