基于机器学习的超高性能混凝土成本优化
作者:
作者单位:

1.重庆大学 材料科学与工程学院,重庆 400045;2.同济大学 材料科学与工程学院,上海 200092;3.重庆大学 土木工程学院,重庆 400045;4.深圳大学 土木与交通工程学院,广东 深圳 518061

作者简介:

周 帅,副教授,工学博士,主要研究方向为土木工程材料。E-mail:shuaizhou@cqu.edu.cn

通讯作者:

中图分类号:

TU528.572

基金项目:

国家自然科学基金(52002040),重庆市地质灾害防治中心(KJ2021050),宁夏回族自治区重点研发计划项目(2023BDE02004)


Mix Proportion Optimization of Ultra-High Performance Concrete Based on Machine Learning
Author:
Affiliation:

1.College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China;2.College of Materials Science and Engineering, Tongji University, Shanghai 200092, China;3.College of Civil Engineering, Chongqing University, Chongqing 400045, China;4.College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,超高性能混凝土(UHPC)凭借其优异的力学性能和耐久性能成为热点研究方向之一,但高昂的成本始终限制其在工程中的应用。提出了一种基于机器学习的超高性能混凝土配合比优化的方法,以降低UHPC的成本。为实现这一目标,首先通过人工神经网络(ANN)建立了UHPC 28 d抗压强度与扩展度的预测模型,再以其为约束条件,同时考虑UHPC组分含量约束、组分比例约束,通过遗传算法(GA)降低UHPC的成本。研究结果表明,ANN模型的预测结果与实验结果的误差在10 %以内,具有良好的预测精度;遗传算法优化后的UHPC成本降低至838.8美元,低于文献中1 000美元的成本。

    Abstract:

    In recent years, ultra-high performance concrete (UHPC) has become one of the hot research directions due to its excellent mechanical properties and durability, but its high cost has always limited its application in engineering. In order to reduce the cost of UHPC, this paper proposes a method based on machine learning to optimize the mix proportion of UHPC. In order to achieve this goal, the prediction model of a 28-day compressive strength and expansion of UHPC was first established by using artificial neural network (ANN), which was taken as the constraint condition, taking into account the constraints of UHPC component content, component proportion and absolute volume, The cost of UHPC was reduced by using genetic algorithm (GA). The research results show that the error between the prediction results of ANN model and the experimental results is within 10 %, which has good prediction accuracy. The cost of UHPC optimized by GA is reduced to $838.8,which is lower than the cost of $1000 mentioned in the literature.

    参考文献
    相似文献
    引证文献
引用本文

周帅,贾跃,李凯,李紫剑,巫晓雪,彭海游,张成明,韩凯航,王冲.基于机器学习的超高性能混凝土成本优化[J].同济大学学报(自然科学版),2024,52(7):1018~1023

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-30
  • 出版日期:
文章二维码