基于曲面力学超材料的吸能减振设计
CSTR:
作者:
作者单位:

1.西北工业大学 无人系统技术研究院,陕西 西安 710072;2.北京宇航系统工程研究所,北京 100076;3.北京理工大学 先进结构技术研究院,北京 100081;4.清华大学 航天航空学院,北京 100084

作者简介:

刘佳佳,研究员,主要研究方向为运载器总体设计与优化技术。E-mail: 67994573@qq.com

通讯作者:

曾庆磊,副教授,工学博士,主要研究方向为先进材料和结构动态力学行为。E-mail: qzeng@bit.edu.cn

中图分类号:

0344

基金项目:

国家自然科学基金(12002050, 12372347)


Energy-Absorption and Vibration-Attenuation Design Using Shell-Based Mechanical Metamaterials
Author:
Affiliation:

1.Unmanned System Research Institute, Northwestern Polytechnical University,Xi’an 710072, China;2.Beijing Institute of Astronautical Systems Engineering,Beijing 100076, China;3.Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;4.School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    爆炸冲击载荷严重威胁了国防和工业装备的服役安全,吸能缓冲材料可有效降低冲击引起的结构振动和破坏。泡沫铝等传统吸能材料力学性能较为单一,设计域大小有限,亟需发展新型吸能缓冲材料。基于冲击响应数值模型,系统研究了冲击过程中多孔材料的吸能机理,表明吸能材料强度适中时才能发挥较好的缓冲减振效果;为了实现吸能材料的定制化设计,进一步基于机器学习和遗传算法设计了具有不同吸能特性的曲面力学超材料,并通过仿真结果验证了曲面力学超材料在吸能减振中的有效性。该研究为新型吸能材料和降冲击优化设计提供了重要的技术支撑。

    Abstract:

    Explosion and impact loadings pose a serious threat to the service safety of defense and industrial equipment. Energy-absorbing materials can effectively reduce structural vibration and the damage caused by impact. Traditional energy-absorbing materials, such as aluminum foam, have a relatively limited design space. Therefore, it is urgent to develop new energy-absorbing materials. In this paper, the energy-absorbing mechanism of porous materials was systematically investigated based on numerical modelling of the impact process. The simulation results indicate that energy-absorbing materials can have a good shock absorption performance only when the strength is appropriate. In order to realize customized design of energy-absorbing materials, shell-based mechanical metamaterials with different energy-absorbing characteristics were designed based on the machine learning and genetic algorithm. The effectiveness of the newly designed metamaterials in energy-absorption and vibration-attenuation was verified through simulation results. This study can provide important technical guidelines for the design and optimization of new energy-absorbing materials.

    参考文献
    [1] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010—2020)[J]. 爆炸与冲击, 2021, 41(12):4.YU Tongxi, ZHU Ling, XU Jun. Progress in structural impact dynamics during (2010—2020)[J]. Explosion and Shock Waves, 2021, 41(12):4.
    [2] QIU X M, YU T X. Some topics in recent advances and applications of structural impact dynamics[J]. Applied Mechanics Reviews, 2011, 64(3):030801.
    [3] 王志亮, 诸斌. 径向不耦合爆破中聚苯乙烯泡沫吸能数值研究[J]. 同济大学学报(自然科学版), 2012, 40(7):1020.WANG Zhiliang, ZHU Bin. Numerical analysis on energy-absorption of expanded polystyrene foam in radical uncoupled blast [J]. Journal of Tongji University (Natural Science), 2012, 40(7):1020.
    [4] 朱洪波, 李晨, 闫美珠, 等. 水泥?聚苯乙烯轻质材料的制备及抗冲击性[J]. 同济大学学报(自然科学版), 2014, 42(5):745.ZHU Hongbo, LI Chen, YAN Meizhu, et al. Preparing and impact resistance properties of lightweight material with cement and expanded polystyrene [J]. Journal of Tongji University (Natural Science), 2014, 42(5):745.
    [5] ZHENG Z, WANG C, YU J, et al. Dynamic stress–strain states for metal foams using a 3D cellular model[J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93.
    [6] 张忠凯, 夏冬星, 杨安民, 等. 三种缓冲材料在某型爆炸螺栓降冲击中的应用研究 [J]. 火工品, 2018(2): 25.ZHANG Zhongkai, XIA Dongxing, YANG Anmin, et al. Study on the application of three cushioning materials to an explosive bolt for impact reduction [J]. Initiators & Pyrotechnics, 2018(2): 25.
    [7] CHEN Y, MA Y, YIN Q, et al. Advances in mechanics of hierarchical composite materials[J]. Composites Science and Technology, 2021, 214: 108970.
    [8] SAN H N, LU G. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering, 2020, 181: 107496.
    [9] FLECK N A, DESHPANDE V S, ASHBY M F. Micro-architectured materials: Past, present and future[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2121): 2495.
    [10] 段晟昱, 王潘丁, 刘畅, 等. 增材制造三维点阵结构设计,优化与性能表征方法研究进展[J]. 航空制造技术, 2022, 65(14): 36.DUAN Shengyu, WANG Panding, LIU Chang,et al. Research progress on design, optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 36.
    [11] 易建坤, 马翰宇, 朱建生, 等. 点阵金属夹芯结构抗爆炸冲击问题研究的综述[J]. 兵器材料科学与工程, 2014, 37(2):116.YI Jiankun, MA Hanyu, ZHU Jiansheng, et al. Review of explosion and shock wave resistance of metallic lattice sandwich structure [J]. Ordnance Material Science and Engineering, 2014, 37(2):116.
    [12] GUO K, YANG Z, YU C H, et al. Artificial intelligence and machine learning in design of mechanical materials[J]. Materials Horizons, 2021, 8(4): 1153.
    [13] LI X, LIU Z L, CUI S Q, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735.
    [14] MAO Y, HE Q, ZHAO X. Designing complex architectured materials with generative adversarial networks[J]. Science Advances, 2020, 6(17): eaaz4169.
    [15] BASTEK J H, KUMAR S, TELGEN B, et al. Inverting the structure–property map of truss metamaterials by deep learning[J]. Proceedings of the National Academy of Sciences, 2022, 119(1): e2111505119.
    [16] WANG Y, ZENG Q, WANG J, et al. Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115571.
    [17] HAN L, CHE S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems[J]. Advanced Materials, 2018, 30(17): 1705708.
    [18] WANG Y, REN X, CHEN Z, et al. Numerical and experimental studies on compressive behavior of Gyroid lattice cylindrical shells[J]. Materials & Design, 2020, 186: 108340.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘佳佳,张军舰,龚林辉,高利军,廖国良,王永桢,曾庆磊.基于曲面力学超材料的吸能减振设计[J].同济大学学报(自然科学版),2024,52(7):1032~1039

复制
分享
文章指标
  • 点击次数:173
  • 下载次数: 315
  • HTML阅读次数: 699
  • 引用次数: 0
历史
  • 收稿日期:2023-11-24
  • 在线发布日期: 2024-07-30
文章二维码