领域知识与数据驱动的混合交通流车辆轨迹预测
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,上海 201804

作者简介:

刘 晗,工学博士,主要研究方向为交通流理论,交通仿真。E-mail: 1910125@tongji.edu.cn

通讯作者:

孙 剑,教授,博士生导师,工学博士,主要研究方向为交通流理论、交通仿真、智能网联与车路协同。 E-mail: sunjian@tongji.edu.cn

中图分类号:

U491.2

基金项目:

国家自然科学基金(52125208),国家重点研发计划(2019YFB1600200)


Mixed Traffic Flow Trajectory Prediction Method Driven by Domain Knowledge and Data
Author:
Affiliation:

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶车辆需具备预测周围车辆轨迹的能力。诸多发展中国家普遍存在弱规则、强交互的混合交通流道路,高密度混合交通流的车辆轨迹预测是极具挑战性的任务。为了兼顾混合交通流道路环境下轨迹预测的高精度和可解释性,设计一个融合领域知识和经验的深度学习模型(DK-Conv-LSTM)实现车辆的长、短时轨迹预测。该模型采用卷积结构(Conv)提取交互特征,并将融合车辆历史信息的特征向量送入长短时记忆网络(LSTM)模型实现轨迹预测。知识经验通过嵌入损失函数的方式引导深度学习模型的训练。与基础的LSTM相比,仅添加卷积层结构的Conv-LSTM模型可提升终点轨迹误差(FDE)约30.46 %,提升平均轨迹误差(ADE)约34.78 %;而DK-Conv-LSTM模型可分别提升FDE 46.81 %和ADE 49.08 %;同时DK-Conv-LSTM模型可还原多前车跟驰、超车行为的驾驶轨迹。

    Abstract:

    Autonomous vehicles need to have the ability to predict the trajectory of vehicles around them. There are many mixed traffic flow roads with weak rules and strong interactions in developing countries, and trajectory prediction of high-density traffic flows is an extremely challenging task. In order to predict the trajectory with accuracy and interpretability for mixed traffic flow, a domain knowledge-guided convolutional long short-term memory (DK-Conv-LSTM) to realize the long and short-term trajectory prediction was proposed. In the data-driven model, a convolutional layer (Conv) was used to extract crucial information from interactive vehicles, and the long short-term memory (LSTM) was utilized to predict trajectory after the concatenation of the history information of the vehicle. Knowledge expertise guided the training of deep learning models by being embedded in loss functions. Using the basic LSTM as the benchmark, the Conv-LSTM with only the convolutional structure added, reduces the final displacement error (FDE) by 30.46 % and the average displacement error (ADE) by 34.78 %. The DK-Conv-LSTM reduced the FDE by 46.81 % and ADE by 49.08 %. Moreover, it could recreate complex driving behavior trajectories such as following between two vehicles and overtaking.

    参考文献
    相似文献
    引证文献
引用本文

刘晗,孙剑.领域知识与数据驱动的混合交通流车辆轨迹预测[J].同济大学学报(自然科学版),2024,52(7):1099~1108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-30
  • 出版日期:
文章二维码