预充氢金属疲劳损伤研究进展
CSTR:
作者:
作者单位:

同济大学航空航天与力学学院,上海 200092

作者简介:

贺鹏飞,教授,博士生导师,工学博士,主要研究方向为复合材料力学与计算力学。 E-mail:ph232@tongji.edu.cn

通讯作者:

李文晓,副教授,硕士生导师,工学博士,主要研究方向为聚合物基复合材料成型工艺。 E-mail:wenxiaoli@tongji.edu.cn

中图分类号:

TG146.21

基金项目:

国家重点研发计划(2019YFB1505200)


A Review of Fatigue Damage in Pre-Charging Hydrogen Metal
Author:
Affiliation:

School of Aerospace Engineering and Applied Mechanics, Tongji University,Shanghai 200092,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在高压氢环境和疲劳荷载作用下,金属承载件会出现材料疲劳性能减损,甚至失效。对临氢构件开展原位氢疲劳损伤研究存在氢安全方面的困难,因此近年来多采用对预充氢金属进行疲劳性能研究的替代方式。简要概述了氢损伤机理,介绍了金属预充氢试验方法,总结了预充氢情况下氢对金属高、低周疲劳性能影响的实验结果;归纳了建立预充氢金属的疲劳寿命模型,对金属氢损伤开展定量分析的研究现状;最后讨论了通过改变临氢材料内氢的渗入量和存在形式来抑制氢对金属的影响来提高临氢材料疲劳寿命的几种方法。

    Abstract:

    Under high-pressure hydrogen environment and fatigue load, metal load-bearing components will experience degradation or even failure in material fatigue performance. There are difficulties in hydrogen safety in conducting in-situ hydrogen fatigue damage research on hydrogen components. Therefore, in recent years, alternative methods have been adopted to study fatigue performance of pre-charged hydrogen metals. This paper briefly outlines the hydrogen damage mechanism, introduces the test method for pre-charged hydrogen metals, summarizes the experimental results of the impact of hydrogen on high-cycle and low-cycle fatigue performance under pre-charged hydrogen conditions, and the current research status of establishing a fatigue life model for pre-charged hydrogen metals and conducting quantitative analysis of metal hydrogen damage. Finally, it discusses several methods for improving the fatigue life of hydrogen components by suppressing the effect of hydrogen on metals by changing the infiltration amount and form of hydrogen in the material.

    参考文献
    [1] 王赓, 郑津洋, 蒋利军, 等. 中国氢能发展的思考[J]. 科技导报, 2017, 35(22): 105.WANG Geng, ZHENG Jinyang, JIANG Lijun, et al. The development of hydrogen energy in China [J]. Science and Technology Review, 2017, 35(22): 105.
    [2] 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39.ZHENG Jinyang, HU Jun, HAN Wulin, et al. Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China [J]. Pressure Vessel, 2020, 37(6): 39.
    [3] 周池楼, 何默涵, 郭晋, 等. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519.ZHOU Chilou, HE Mohan, GUO Jin, et al. Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere [J]. Chemical Industry Progress, 2022, 41(2): 519.
    [4] 陈明, 谢逍原, 任晓虎, 等. 316L 不锈钢抗氢性能研究现状[J]. 中国特种设备安全, 2022, 38(2): 9.CHEN Ming, XIE Xiaoyuan, REN Xiaohu, et al. Research status of hydrogen resistance of 316L stainless steel [J]. China Special Equipment Safety, 2022, 38(2): 9.
    [5] ZAPPFE C A, SIMS C E. Hydrogen, flakes and shatter cracks[J]. Metals and Alloys, 1941,12(1): 145.
    [6] SCHOBER T, SCHAFER W. Transmission electron microscopy and neutron diffraction studies of Feti-H(D)[J]. Journal of the Less Common Metals, 1980, 74(1):23.
    [7] 张恒华,魏绍琴,姚玉琴,等.氢致304L奥氏体不锈钢脆断机理的研究[J].材料科学与工艺,1993(2):15.ZHANG Henghua, WEI Shaoqin, YAO Yuqin, et al. Study on brittleness breaking mechanism of 304L austenitic stainless steel induced by hydrogen [J]. Materials Science and Technology, 1993(2):15.
    [8] TROIANO, ALEXANDER R. The role of hydrogen and other interstitials in the mechanical behavior of metals[J]. Metallography Microstructure & Analysis, 2016, 5(6): 557.
    [9] 谭思治, 罗兵辉.7N01铝合金应力腐蚀行为研究[J].稀有金属,2021,45(10):1162.TAN Sizhi, LUO Binghui. Stress corrosion behavior of 7N01 Aluminum alloy [J]. Rare Metals, 2021,45(10):1162.
    [10] KIM K S, KANG J H, KIM S J. Effect of C–N interaction on hydrogen embrittlement of 15Cr–15Mn–4Ni-Based austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2021, 52(9): 4161.
    [11] PHELPS E H. Stress-corrosion behavior of high yield-strength steels[C/CD]// Proceedings of the World Petroleum Congress.Mexico City:[s.n.], 1967.
    [12] 安旭东, 朱特, 王茜茜, 等. 奥氏体 316 不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913.AN Xudong, ZHU Te, WANG Qianqian, et al. Interaction mechanism of dislocation and hydrogen in austenitic 316 stainless steel [J]. Acta Metallurgica Sinica, 2021, 57(7): 913.
    [13] 胡红磊. 铁镍基合金中特殊晶界及其对抗氢性能影响的研究[D]. 合肥: 中国科学技术大学, 2020.HU Honglei. Research on special grain boundaries and their effects on hydrogen resistance of Fe-Ni base alloys [D].Hefei: University of Science and Technology of China, 2020.
    [14] PETCH N J ,STABLES P . Delayed fracture of metals under static load[J]. Nature, 1952, 169(4307):842.
    [15] BEACHEM, CEDRIC D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)[J].Metallurgical and Materials Transactions,1972,B(3): 441.
    [16] ROBERTSON I M, BIRNBAUM H K, SOFRONIS P. Hydrogen effects on plasticity[J]. Dislocations in Solids, 2009, 15(1): 249.
    [17] VUCKO F, RINGOT G, THIERRY D, et al. Fatigue behavior of super duplex stainless steel exposed in natural seawater under cathodic protection[J]. Frontiers in Materials, 2022, 9(1): 26.
    [18] WAN D . An In-situ electrochemical nanoindentation (ECNI) study on the effect of hydrogen on the mechanical properties of 316L austenitic stainless steel[J]. Materials,2021, 14(21): 642.
    [19] 黄舒, 胡磊, 盛杰, 等.激光喷丸强化对电化学充氢316L奥氏体不锈钢振动疲劳性能的影响[J].稀有金属材料与工程,2022,51(2):579.HUANG Shu, HU Lei, SHENG Jie, et al. Effect of laser shot peening on vibration fatigue properties of electrochemical hydrogen-filled 316L austenitic stainless steel [J]. Rare Metal Materials and Engineering,2022,51(2):579.
    [20] THOMAS P , VARUGHESE K T , DWARAKANATH K , et al. Dielectric properties of Poly(vinylidene fluoride) / CaCu3Ti4O12 composites[J]. Composites Science & Technology, 2010, 70(3):539.
    [21] 李永德, 徐娜, 郭卫民, 等. 高压气相热充氢对 SUJ2 轴承钢超高周疲劳行为的影响[J]. 材料工程, 2014 (2): 87.LI Yongde, XU Na, GUO Weimin, et al. Influence of high pressure gas phase hot hydrogen charging on ultra-high cycle fatigue behavior of SUJ2 bearing steel [J]. Journal of Materials Engineering, 2014 (2): 87.
    [22] 赵明久, 戎利建. 一种面向奥氏体合金的高压气相热充氢方法[P] . 中国专利:CN113758858A, 2022.ZHAO Mingjiu, RONG Lijian. A high pressure gas phase thermal charging method for austenitic alloys [P]. China Patent: CN113758858A, 2022.
    [23] 滕越, 陈国宏, 魏金韬, 等. Ⅲ 型储氢气瓶内胆 6061-T6 铝合金的氢致损伤研究进展[J]. 装备环境工程, 2021, 18(4): 103.TENG Yue, CHEN Guohong, WEI Jintao, et al. Research progress of hydrogen-induced damage of 6061-T6 aluminum alloy in type III hydrogen storage cylinder [J]. Equipment Environmental Engineering, 2021, 18(4): 103.
    [24] GAO Z, GONG B, WANG B, et al. Effect of fatigue damage on the hydrogen embrittlement sensitivity of X80 steel welded joints[J]. International Journal of Hydrogen Energy, 2021, 46(77): 38535.
    [25] 安腾. 氢气环境X80管线钢疲劳损伤行为研究[D].北京:中国石油大学,2018.AN Teng. Research on fatigue damage behavior of X80 pipeline steel in hydrogen environment [D]. Beijing:China University of Petroleum,2018.
    [26] ZHAO X, WANG H, LIU G, et al. Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint[J]. Materials Today Communications, 2022, 31(1): 103524.
    [27] NGUYEN T T, PARK J, NAHM S H, et al. Ductility and fatigue properties of low nickel content type 316L austenitic stainless steel after gaseous thermal pre-charging with hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(51): 28031.
    [28] MATSUMIYA H, SHIBATA A, OKADA K, et al. Characteristics of hydrogen-related fatigue fracture in 2Mn-0.1 C martensitic steel[J]. International Journal of Hydrogen Energy, 2021, 46(75): 37509.
    [29] OLIVEIRA D M, SAN C W, MEDLIN D L, et al. The influence of hydrogen on the low cycle fatigue behavior of strain-hardened 316L stainless steel[J]. Materials Science and Engineering: A, 2022, 849(8): 143477.
    [30] 靳晓坤, 徐乐, 尉文超, 等.氢对含(Ti,Mo)C析出相的调质钢的超高周疲劳性能的影响(英文)[J].稀有金属材料与工程,2021,50(02):458.JIN Xiaokun, XU Le, WEI Wenchao, et al. Effect of hydrogen on ultrahigh cycle fatigue properties of tempered steel containing (Ti,Mo)C precipitates [J]. Rare Metal Materials and Engineering, 2021,50(2):458.
    [31] GIBBS P J, MARCHI C SAN , NIBUR K A, et al. Comparison of internal and external hydrogen on fatigue-life of austenitic stainless steels[C/CD]//ASME 2016 Pressure Vessels and Piping Conference. [S.l.]:American Society of Mechanical Engineers, 2016, 50435: V06BT06A033.
    [32] NYGREN K E, NAGAO A, SOFRONIS P, et al. The role of microstructure in hydrogen-induced fatigue failure of 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2020, 51(11): 5704.
    [33] MURAKAMI Y, NOMOTO T, UEDA T. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part II: A fractographic investigation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(11):903.
    [34] 朱士鹏. 扭杆弹簧用高强度钢的超高周疲劳性能研究[D].秦皇岛:燕山大学,2019.ZHU Shipeng. Study on ultrahigh cycle fatigue performance of high strength steel for torsion bar spring [D]. Qinhuangdao:Yanshan University,2019.
    [35] LI H, DONG F, ZHOU Q, et al. Influence of hydrogen on the S–N fatigue of DP1180 advanced high-strength steel[J]. Corrosion Science, 2022, 205(8): 110465.
    [36] 刘根. X80管线钢焊接接头环境辅助疲劳失效研究[D].长春:吉林大学,2021.LIU Gen. Study on environment-assisted fatigue failure of X80 pipeline steel welded joints [D]. Changchun:Jilin University,2021.
    [37] 龚园军, 张军, 毛江鸿, 等. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146.GONG Yuanjun, ZHANG Jun, MAO Jianghong, et al. Experimental study on low cycle fatigue properties of different hydrogen containing steel bars after electrochemical repair [J] Material Guide, 2021, 35 (6): 6146.
    [38] 周超, 张永健, 惠卫军, 等. 氢对 60Si2CrVA 弹簧钢超高周疲劳性能的影响[J]. 钢铁研究学报, 2013, 25(9): 45.ZHOU Chao, ZHANG Yongjian, HUI Weijun, et al. Effect of hydrogen on ultrahigh cycle fatigue performance of 60Si2CrVA spring steel [J]. Journal of Iron and Steel Research, 2013, 25(9): 45.
    [39] ARNAUDOV N , KOLYSHKIN A , WEIHE S . Micromechanical modeling of fatigue crack initiation in hydrogen atmosphere[J]. Mechanics of Materials, 2020,149(10):103557.
    [40] ZIRKLE T, COSTELLO L, ZHU T, et al. Modeling D-Mediated hydrogen transport and trapping in face-centered cubic metals[J]. Journal of Engineering Materials and Technology, 2022, 144(1):1.
    [41] 陆大敏. 氢致金属疲劳的失效分析与细观模型预测方法研究[D].南宁:广西大学,2021.LU Damin. Study on failure analysis and mesoscopic model prediction method of hydrogen-induced metal fatigue [D]. Nanning:Guangxi University,2021.
    [42] 李婷婷. CO抑制高压临氢管线氢致脆化机理的研究[D].北京:中国石油大学,2018.LI Tingting. Study on mechanism of hydrogen embrittlement induced by CO in high pressure hydrogen-facing Pipelines [D]. Beijing:China University of Petroleum ,2018.
    [43] KOMODA R, YAMADA K, KUBOTA M, et al. The inhibitory effect of carbon monoxide contained in hydrogen gas environment on hydrogen-accelerated fatigue crack growth and its loading frequency dependency[J]. International Journal of Hydrogen Energy, 2019, 44(54): 29007.
    [44] 周超, 张永健, 惠卫军,等. 氢对42CrMoVNb钢超高周疲劳性能的影响[J]. 钢铁研究学报, 2013, 25(12):6.ZHOU Chao, ZHANG Yongjian, HUI Weijun, et al. Influence of hydrogen on ultrahigh cycle fatigue performance of 42CrMoVNb steel [J]. Journal of Iron and Steel Research, 2013, 25(12):6.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺鹏飞,赵晟炜,李文晓.预充氢金属疲劳损伤研究进展[J].同济大学学报(自然科学版),2024,52(7):1118~1125

复制
分享
文章指标
  • 点击次数:79
  • 下载次数: 470
  • HTML阅读次数: 23
  • 引用次数: 0
历史
  • 收稿日期:2022-11-18
  • 在线发布日期: 2024-07-30
文章二维码