超导电动磁浮列车电磁特性及悬浮稳定性控制
CSTR:
作者:
作者单位:

1.同济大学 国家磁浮交通工程技术研究中心,上海 201804;2.成都航利(集团)实业有限公司,四川 成都 611937;3.同济大学 道路与交通工程教育部重点实验室,上海 201804

作者简介:

王小农,工学博士,主要研究方向为高速磁浮列车稳定性控制。E-mail:xiaonongwang_work@163.com

通讯作者:

黄靖宇,教授,博士生导师,工学博士,主要研究方向为高速磁浮交通系统理论和应用。 E-mail: huangjingyu@tongji.edu.cn

中图分类号:

TM26


Electromagnetic Characteristics and Levitation Stability Control of Superconducting Electrodynamic Maglev Train
Author:
Affiliation:

1.National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China;2.Chengdu Hangli Industrial Co., Ltd., Chengdu 611937, China;3.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    超导电动磁浮列车运行过程中电磁阻尼较小,借助列车直线同步电机牵引控制,设计悬浮稳定性控制系统,为列车的悬浮稳定提供一种技术手段。以MLX01型超导电动磁浮列车为研究对象,结合单个转向架与地面线圈组成结构的场-路-运动耦合数值模型,揭示了超导电动磁浮列车的悬浮特性。研究了超导电动磁浮列车超导磁场强度、悬浮位移、运行速度以及标准空气气隙之间的关系特性,分析了不同超导磁场强度和标准空气气隙下单个转向架悬浮方向电磁弹簧系数变化规律。采用矢量控制策略实现了超导磁浮列车直线同步电机直轴和交轴分量的解耦,建立了直轴电流与悬浮力之间的数值表达式,设计了悬浮稳定性控制结构,并采用状态反馈实现悬浮系统的极点配置。通过对比采用悬浮稳定性控制结构前后转向架平衡位移响应,证明了采用悬浮控制结构的有效性。研究结果表明,采用悬浮稳定性控制系统可有效抵抗外部干扰,维持列车的悬浮稳定,也可进一步提高列车的乘坐舒适性。

    Abstract:

    The electromagnetic damping of the superconducting electrodynamic maglev train is low during the operation. With the assistance of the propulsion control of the linear synchronous motor, a levitation stability control system is designed for a technical guarantee for the levitation stability of the train. Taking the superconducting electrodynamic maglev train of the MLX01 as the research object, combined with the field-circuit-motion coupling numerical model composed of a single bogie and ground coils, the levitation characteristics of the superconducting electrodynamic maglev train were revealed. The relationship between superconducting magnetic field strength, levitation displacement, running speed and standard air gap were studied. Analysis was made of the variation law of the electromagnetic spring coefficient in the levitation direction of a single bogie under different superconducting magnetic field strength and standard air gaps. The vector control strategy was adapted to analyze the linear synchronous motor of the superconducting electrodynamic maglev train to realize the decoupling of the components of the direct axis and the quadrature axis, and the numerical expression between the direct axis current and the levitation force was also established. A levitation stability control system was designed, and state feedback is used to realize the pole configuration of the levitation system. The balance displacement response of bogie applied before and after the levitation stability control system were compared, which proved the effectiveness of the levitation control structure. The research results show that the levitation stability control system can effectively resist external disturbances, maintain the levitation stability of the train, and further improve the ride comfort of the train.

    参考文献
    [1] 秦伟,范瑜,朱熙,等.永磁电动式磁悬浮装置的研究[J].电机与控制学报,2011,15(7):77.QIN Wei, FAN Yu, ZHU Xi, et al. Analysis of permanent-magnet electro-dynamic maglev device [J].Electric Machines and Control, 2011,15(7):77.
    [2] TAKAO K , TAKAHASHI K . Vehicles for superconducting maglev system on yamanashi test line [J]. Railway Technical Research Institute Quarterly Reports, 1994, 35:101.
    [3] MURAI T. Characteristics of LSM combined propulsion, levitation and guidance[J]. Electrical Engineering in Japan, 1995, 115(4):134.
    [4] CAI Y, CHEN S S. Dynamic characteristics of magnetically-levitated vehicle systems [J]. Applied Mechanics Reviews, 1997, 50(11):647.
    [5] LI J. Normal force analysis on a high temperature superconducting linear synchronous motor [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):5200304.
    [6] 陈殷,张昆仑.板式双边永磁电动悬浮电磁力计算[J].电工技术学报,2016,31(24):150.CHEN Yin, ZHANG Kunlun. Calculation of electromagnetic force of plate type null double side permanent magnet electrodynamic suspension [J].Transactions of China Electrotechnical Society. 2016,31(24): 150.
    [7] 李春生,杜玉梅,夏平畴,等.直线型 Halbach 磁体和导体板构成的电动式磁悬浮系统的分析及实验[J]. 电工技术学报,2009,24(1):18.LI Chunsheng, DU Yumei, XIA Pingchou,et al. Analysis and experimental testing of eds maglev with linear halbach and conducting sheet[J].Transactions of China Electrotechnical Society, 2009, 24(1): 18.
    [8] 王志涛,蔡尧,龚天勇,等.基于场–路–运动耦合模型的超导电动悬浮列车特性研究[J].中国电机工程学报,2019,39(4):1162.WANG Zhitao, CAI Yao, GONG Tianyong, et al. Study on characteristics of superconducting electric levitation train based on field road motion coupling model [J]. Chinese Journal of Electrical Engineering, 2019, 39 (4): 1162.
    [9] CAI Y , MA G , WANG Y , et al. Semianalytical calculation of superconducting electrodynamic suspension train using figure-eight-shaped ground coil[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(5):1.
    [10] OHASHI S , UEDA N . Influence of the damper coil system on the levitation characteristics in the superconducting magnetically levitated system in case of sc coil quenching [J]. IEEE Transactions on Magnetics, 2014, 50(11):1.
    [11] DURGA R K , KUSHWAHA H S , VERMA A K ,et al. Simulation based reliability evaluation of AC power supply system of Indian Nuclear Power Plant[J].International Journal of Quality & Reliability Management, 2007, 24(6):628.
    [12] YAMAUCHI Y, TANITSU H, KITANO J ,et al. Harmonics control of the 20 mva pwm inverter fed lsm drive systemfor the yamanashi maglev test line[C]// Power Conversion Conference-nagaoka. Tokyo: IEEE, 1997:156-162.
    [13] 臧文彬. 基于电流源逆变器的三相永磁同步电机控制系统研究[D].哈尔滨:哈尔滨工业大学,2021.ZANG Wenbin. Research on three-phase permanent magnet synchronous motor control system based on current source inverter [D]. Harbin:Harbin Institute of Technology, 2021.
    [14] KEN, WATANABE, HIROSHI, et al. A study of vibration control systems for superconducting maglev vehicles (vibration control of lateral and rolling motions) [J]. Journal of System Design and Dynamics, 2007, 1(3):593.
    [15] WANG Xiaonong, HUANG Jingyu. Study on electromagnetic relationship and dynamic characteristics of superconducting electrodynamic maglev train on curved[J]. IEEE Transactions on Intelligent Transportation Systems,2023, 24(6):6146.
    [16] KUWANO K, IGARASHI M, KUSADA S, et al. The running tests of the superconducting maglev using the hts magnet[J]. IEEE Transactions on Applied Superconductivity,2007,17(2): 2125.
    [17] RAO K D,KUSHWAHA H S,VERMA A K, et al. Simulation based reliability evaluation of AC power supply system of Indian Nuclear Power Plant[J]. International Journal of Quality & Reliability Management, 2007,24(6):628.
    [18] ONO M, KOGA S, OHTSUKI H. Japan's superconducting maglev train[J]. IEEE Instrumentation & Measurement Magazine, 2002, 5(1):9.
    相似文献
    引证文献
引用本文

王小农,黄靖宇.超导电动磁浮列车电磁特性及悬浮稳定性控制[J].同济大学学报(自然科学版),2024,52(8):1261~1269

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-31
  • 在线发布日期: 2024-08-30
文章二维码