多源-多离子耦合作用下水泥胶砂硫酸盐腐蚀机理
CSTR:
作者:
作者单位:

1.长安大学 公路学院,陕西 西安 710064;2.特殊地区公路工程教育部重点实验室,陕西 西安 710064;3.同济大学 土木工程学院,上海 200092;4.国家电网有限公司特高压建设分公司,北京 100052

作者简介:

赵高文,副教授,博士生导师,工学博士,主要研究方向为盐渍土及盐湖地区岩土工程结构耐久性。 E-mail:007gwzhao@chd.edu.cn

通讯作者:

李镜培,教授,博士生导师,工学博士,主要研究方向为岩土工程可靠度与耐久性。 E-mail:lijp2773@tongji.edu.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金(41772290, 52378322);陕西省青年科技新星项目(2023KJXX-022);长安大学中央高校基本科研业务费专项资金(300102213205);博士后创新人才计划(BX20200287)


Sulfate Corrosion Mechanism of Cement Mortar Under Multi-sources and Multi-ion Coupling Effect
Author:
Affiliation:

1.School of Highway, Chang’ an University, Xi’an 710064, China;2.Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China;3.College of Civil Engineering, Tongji University, Shanghai 200092, China;4.Ultra High Voltage Construction Branch of State Grid Corporation of China, Beijing 100052, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    硫酸盐渍土地区现浇结构广泛存在多源-多离子耦合腐蚀,利用砂浆内掺Mg2+、Cl-以及SO42-并置于不同的腐蚀环境中,在腐蚀期间分别测定试样的孔隙分布、质量、尺寸以及不同深度硫酸盐浓度的变化,同时测定了抗折、抗压强度的演变规律。采用扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)及热重分析(TG-DTG)等方法观测试样微观结构及矿物成分变化。试验结果表明,内源腐蚀增加了试样的有害孔含量,加速了腐蚀进程;内源腐蚀对试样抗折强度的发展具有明显的不利影响,较无内源腐蚀试样抗折强度降低了50%~67%;内源Mg2+严重影响了硫酸盐环境中试样抗折强度的发展,试样的抗折强度仅为无腐蚀组的4.4%;试样表层的Mg2+缓解了有害孔隙含量增加趋势,对内部结构具有一定的保护作用。

    Abstract:

    Multi-source and multi-ion coupling corrosion is widespread in cast-in-situ structures in sulphate saline soil area. By premixing Mg2+, Cl- and SO42- into mortar and placing it in different corrosive environments, the pore distribution, mass, size and sulfate concentration at different depths, as well as the evolution law of flexural and compressive strength of specimens were measured during corrosion period. The microstructure and mineral composition of specimens were observed by scanning electron microscope-energy dispersive spectroscopy analysis (SEM-EDS), X-ray diffraction (XRD) and thermogravimetric analysis (TG-DTG). Results show that internal corrosion increased the content of harmful pores and accelerated the corrosion process. Internal corrosion has a significant adverse effect on the development of flexural strength, the strength of the specimens are reduced by 50%~67% compared with that of the specimens without internal corrosion. Internal Mg2+ negatively affects the development of the flexural strength of the specimens in the sulfate environment, the flexural strength of the specimens are only 4.4% of that of the non-corrosive specimens. Mg2+ in the periphery of specimens alleviates the increasing trend of harmful pore content and has a certain protective effect on the internal structure.

    参考文献
    [1] ZHUTOVSKY S, KOVLER K. Influence of water to cement ratio on the efficiency of internal curing of high-performance concrete[J]. Construction and Building Materials, 2017, 144: 311.
    [2] 刘超, 姚羿舟, 刘化威, 等. 硫酸盐干湿循环下再生复合微粉混凝土的劣化机理[J]. 建筑材料学报, 2022,25(11):1128.LIU Chao, YAO Yizhou, LIU Huawei, et al. Deterioration mechanism of recycled composite powder concrete under dry-wet cycles of sulfate[J]. Journal of Building Materials, 2022,25(11):1128.
    [3] 左义兵, 廖宜顺, 叶光. 盐耦合侵蚀下碱矿渣水泥相演变的热力学模拟[J]. 建筑材料学报, 2023, 26(1): 7.ZUO Yibing, LIAO Yishun, YE Guang. Thermodynamic modelling of phase evolution in alkali-activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1): 7.
    [4] DU J M, TANG Z Y, LI G, et al. Key inhibitory mechanism of external chloride ions on concrete sulfate attack[J]. Construction and Building Materials, 2019, 225: 611.
    [5] 朱效宏, 李青, 陈平, 等. 硫酸盐侵蚀条件下C–(A)–S–H组成-结构演化的量化分析[J]. 硅酸盐学报, 2021, 49(5): 901.ZHU Xiaohong, LI Qing, CHEN Ping, et al. Composition and nano-structure of C-(A)-S-H gels in cement pastes after sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 901.
    [6] WU M, ZHANG Y S, JI Y S, et al. A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature[J]. Construction and Building Materials, 2020, 243: 118279.
    [7] NEVILLE A. The confused world of sulfate attack on concrete[J]. Cement and Concrete Research, 2004, 34(8): 1275.
    [8] ZHAO G W, LI J P, HAN F, et al. Sulfate-induced degradation of cast-in-situ concrete influenced by magnesium[J]. Construction and Building Materials, 2019, 199: 194.
    [9] CAMPOS A, LOPEZ C M, BLANCO A, et al. Effects of an internal sulfate attack and an alkali-aggregate reaction in a concrete dam[J]. Construction and Building Materials, 2018, 166: 668.
    [10] COLMAN C, BULTEEL D, THIERY V, et al. Internal sulfate attack in mortars containing contaminated fine recycled concrete aggregates[J]. Construction and Building Materials, 2021, 272: 121851.
    [11] 张永康, 张田, 张荣飞,等. 高盐渍土地区某铁路路基填料选择研究[J]. 铁道工程学报, 2016, 33(9): 10.ZHANG Yongkang, ZHANG Tian, ZHANG Rongfei,et al. Research on the selection of a railway subgrade filler in high saline soil region[J]. Journal of Railway Engineering Society, 2016, 33(9): 10.
    [12] PRADHAN B, BHATTACHARJEE B. Rebar corrosion in chloride environment[J]. Construction and Building Materials, 2011, 25(5): 2565.
    [13] 黎玉婷, 张肖峰, 叶盛. 高原地区盐渍土硫酸盐强腐蚀性环境防腐设计[J]. 南方能源建设, 2018, 5(3): 102.LI Yuting, ZHANG Xiaofeng, YE Sheng. Anti-corrosion design of concrete structure in sulfate strong corrosive environment in saline soil in plateau area[J]. Southern Energy Construction, 2018, 5(3): 102.
    [14] HAN S, ZHONG J, YU Q, et al. Sulfate resistance of eco-friendly and sulfate-resistant concrete using seawater sea-sand and high-ferrite portland cement[J]. Construction and Building Materials, 2021, 305: 124753.
    [15] 李田雨, 王维康, 李扬涛,等. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101.LI Tianyu, WANG Weikang, LI Yangtao, et al. Corrosion failure mechanism of ultra-high-performance concretes prepared with sea water and sea sand in an artificial sea water containing sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1101.
    [16] 李闯, 范颖芳, 王耀宇,等. 钢筋-煤系偏高岭土水泥砂浆抗氯盐-硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(5): 447.LI Chuang, FAN Yingfang, WANG Yaoyu, et al. Corrosion resistance to chloride and sulfate salt attack of steel bar-cement mortar containing coal metakaolin[J]. Journal of Building Materials, 2022, 25(5): 447.
    [17] 杨永敢, 康子豪, 詹炳根,等. 初始损伤混凝土的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(12): 1255.YANG Yonggan, KANG Zihao, ZHAN Binggen, et al. Sulfate resistance of concrete with initial damage[J]. Journal of Building Materials, 2022, 25(12): 1255.
    [18] 刘飞禹, 赵川, 孙宏磊, 等. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究[J]. 岩石力学与工程学报, 2022, 41(8):1680.LIU Feiyu, ZHAO Chuan, SUN Honglei, et al. Study on the effect of salt content on the shear characteristics of the interface between sodium sulphate saline soil and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8):1680.
    [19] JIANG H, HAN J, REN L, et al. Study of early-age performance of cementitious backfills with alkali activated slag under internal sulfate attack[J]. Construction and Building Materials, 2023, 371: 130786.
    [20] KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155.
    [21] VEDALAKSHMI R, SARASWATHY V, YONG A K. Performance evaluation of blended cement concretes under MgSO4 attack[J]. Magazine of Concrete Research, 2011, 63(9): 669.
    [22] KUNTHER W, LOTHENBACH B, SCRIVENER K L. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions[J]. Cement and Concrete Research, 2013, 46: 23.
    [23] HUANG Q, ZHU X, XIONG G, et al. Will the magnesium sulfate attack of cement mortars always be inhibited by incorporating nanosilica? [J]. Construction and Building Materials, 2021, 305: 124695.
    [24] SANTHANAM M, COHEN M D, OLEK J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack[J]. Cement and Concrete Research, 2003, 33(3): 325.
    [25] 关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D]. 西安: 长安大学, 2012.GUAN Bowen. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D]. Xi’an, Chang’an University, 2012.
    [26] DONG Q, ZHENG H, ZHANG L, et al. Numerical simulation on diffusion-reaction behavior of concrete under sulfate-chloride coupled attack[J]. Construction and Building Materials, 2023, 405: 133237.
    [27] JIN H, LIU J, ZHONG D, et al. Experimental study on chloride ion diffusion behavior and microstructure in concrete under alternating ambient humidity conditions[J]. Construction and Building Materials, 2023, 401: 132886.
    [28] LIU Z Q, DENG D H, DE SCHUTTER G, et al. The effect of MgSO4 on thaumasite formation[J]. Cement and Concrete Composites, 2013, 35(1): 102.
    [29] HUANG Q, ZHENG W, XIAO X, et al. A study on the salt attack performance of magnesium oxychloride cement in different salt environments[J]. Construction and Building Materials, 2022, 320: 126224.
    [30] SANTHANAM M, COHEN M D, OLEK J. Sulfate attack research—whither now? [J]. Cement and Concrete Research, 2001, 31(6): 845.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵高文,王卓,胡亦奇,徐志军,郭梦真,李镜培.多源-多离子耦合作用下水泥胶砂硫酸盐腐蚀机理[J].同济大学学报(自然科学版),2024,52(8):1286~1296

复制
分享
文章指标
  • 点击次数:38
  • 下载次数: 843
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2023-07-17
  • 在线发布日期: 2024-08-30
文章二维码