燃料电池氢气流量控制系统变负载匹配设计与仿真
CSTR:
作者:
作者单位:

1.同济大学 机械与能源工程学院,上海 201804;2.同济大学 汽车学院,上海 201804;3.同济大学 新能源汽车工程中心,上海 201804

作者简介:

李晶, 副教授, 工学博士, 主要研究方向为流体传动控制基础理论及应用。 E-mail: cynthia_li@tongji.edu.cn

中图分类号:

TM911.42;TK91

基金项目:

国家自然科学基金(52276210)


Variable Load Matching Design and Simulation of Hydrogen Flow Control System for Fuel Cell
Author:
Affiliation:

1.School of Mechanical Engineering, Tongji University, Shanghai 201804, China;2.School of Automotive Studies, Tongji University, Shanghai 201804, China;3.Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对车载质子交换膜燃料电池供氢系统负载工况多变时的氢气流量控制问题,提出一种基于比例减压阀与流量控制阀的氢气流量负载匹配控制系统架构与方法。建立了从高压储氢瓶至燃料电池堆的供氢系统整体模型,基于该模型设计了比例减压阀、流量控制阀与氢气循环泵的控制策略,并就某一型号电堆的变负载工况对系统模型与控制策略进行仿真验证。结果表明:电堆阳极压力可快速跟踪给定压力,响应时间约2~3s;氢气流量可适应负载变化需求,其瞬时超调量与压力响应速度成正相关;稳态时氢气利用率维持在95%以上,供氢过量比维持在1.27以上,供气氮含量维持在5%以下,满足电堆性能需求。

    Abstract:

    Addressing the challenge of hydrogen flow control in the on-board proton exchange membrane fuel cell system under variable loads, a control system architecture and method for hydrogen flow load matching based on proportional pressure reducing valve and flow control valve were proposed. The comprehensive model from the hydrogen tank to the fuel cell stack was established. Control strategies for the proportional pressure reducing valve, flow control valve, and hydrogen circulation pump were designed and validated through simulations. The results show that the anode pressure of the stack can promptly track the set pressure with a response time of approximately 2~3 s. The hydrogen flow can adjust to load variations, with the transient overshoot correlating positively with the pressure response speed. In a stable state, the hydrogen utilization rate remains above 95%, the hydrogen excess ratio exceeds 1.27, and the nitrogen content in the supplied gas is below 5%, meeting the stack performance criteria.

    参考文献
    [1] 訚耀保, 陈洁萍, 罗九阳,等. 氢能源汽车车载超高压气动减压阀的机理与特性分析[J]. 中国工程机械学报, 2008(3): 310.YIN Yaobao, CHEN Jieping, LUO Jiuyang, et al. Mechanism and property analysis on ultra-high pressure pneumatic decompressing valve for hydrogen vehicles[J]. Chinese Journal of Construction Machinery, 2008(3): 310.
    [2] HWANG J J. Effect of hydrogen delivery schemes on fuel cell efficiency[J]. Journal of Power Sources, 2013, 239(10): 54.
    [3] TOGHYANI S, AFSHARI E, BANIASADI E. A parametric comparison of three fuel recirculation system in the closed loop fuel supply system of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7518.
    [4] JENSSEN D, BERGER O, KREWER U. Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 298(12): 249.
    [5] MORáN D A, MARTíNEZ S A RODRíGUEZ J J P, et al. PEM fuel cell voltage neural control based on hydrogen pressure regulation[J]. Processes, 2019, 7(7): 434.
    [6] HONG Ling, CHEN Jian, LIU Zhiyang, et al. A nonlinear control strategy for fuel delivery in PEM fuel cells considering nitrogen permeation[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1565.
    [7] CHEN Jian, WU Zhongle, WU Chengshuai,et al. Observer based fuel delivery control for PEM fuel cells with a segmented anode model[J]. Asian Journal of Control, 2019, 21(4): 1781.
    [8] YUAN Hao, DAI Haifeng, WU Wei, et al. A fuzzy logic PI control with feedforward compensation for hydrogen pressure in vehicular fuel cell system[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5714.
    [9] 张家明, 马天才, 丛铭, 等. 大功率燃料电池氢气系统建模与控制[J]. 汽车技术, 2021(2): 23.ZHANG Jiaming, MA Tiancai, CONG Ming, et al. Hydrogen system modelling & control for high-power fuel cell system[J]. Automobile Technology, 2021(2): 23.
    [10] 何丽, 刘优贤, 冯坤, 等. 阴阳极饥饿对PEMFC单电池动态性能影响[J]. 太阳能学报, 2019, 40(8): 2383.HE Li, LIU Youxian, FENG Kun, et al. Effects of cathode and anode starvation on performance of single PEMFC [J]. Acta Energiae Solaris Sinica, 2019, 40(8): 2383.
    [11] 黄俭标, 杨代军, 常丰瑞, 等. 低氢气计量比下车载工况燃料电池电堆耐久性研究[J]. 高校化学工程学报, 2015, 29(6): 1364.HUANG Jianbiao, YANG Daijun, CHANG Fengrui, et al. Durability of a fuel cell stack with low hydrogen stoichiometry under driving cycle conditions[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6): 1364.
    [12] 魏兆琼. 物理化学[M]. 北京: 高等教育出版社, 1987.WEI Zhaoqiong. Physical chemistry[M]. Beijing: Higher Education Press, 1987.
    [13] O'HAYRE R , CHA S W , COLLELA W G, et al. Fuel cell fundamentals third edition[M]. Hoboken: John Wiley & Sons Inc.,2016.
    [14] KOCHA S S, YANG D L, YI J S. Characterization of gas crossover and its implications in PEM fuel cells[J]. AICHE Journal, 2006, 52(5): 1917.
    [15] BUSCH. Product leaflet & instruction-manual mink MH 0018 A[EB/OL]. (2021-8-9)[2023-3-14]. https://www.buschvacuum.com/cn/zh/products/mink-mh-0018-a.html.
    [16] BALLARD. FCvelocity?-9SSL V4 product manual and integration guide[M]. Burnaby: Ballard Power System Inc., 2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李晶,张力,邹姜昆,明平文.燃料电池氢气流量控制系统变负载匹配设计与仿真[J].同济大学学报(自然科学版),2024,52(8):1297~1304

复制
分享
文章指标
  • 点击次数:122
  • 下载次数: 994
  • HTML阅读次数: 671
  • 引用次数: 0
历史
  • 收稿日期:2023-10-11
  • 在线发布日期: 2024-08-30
文章二维码