基于选座行为的定制公交车内新冠病毒传播风险建模与分析
CSTR:
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,上海201804

作者简介:

沈 煜,副教授,博士生导师,工学博士,主要研究方向为交通数据挖掘,车路协同系统分析与优化。 E-mail: yshen@tongji.edu.cn

通讯作者:

暨育雄,教授,博士生导师,工学博士,主要研究方向为共享交通与物流调度,交通全息感知与数据分析。 E-mail: xyji@tongji.edu.cn

中图分类号:

U491.1+7

基金项目:

国家重点研发计划(2021YFB1600100);国家自然科学基金(52272321)


Modeling and Analysis of Risks of COVID-19 Spreading in Customized Buses Based on Seat Choice Behaviors
Author:
Affiliation:

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [18]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为精细度量公共交通车厢内不同乘客位置分布下的传染病传播风险,以新冠病毒早期传播特征为例,首先,分析了我国2019—2020年新冠病毒感染爆发前后的定制公交乘客选座行为变化规律。其次,基于加权接触网络,构建了传染病扩散模型(susceptible-exposed-infectious-recovered,SEIR),并探究了不同乘客位置分布下的新冠病毒传播风险。最后,量化对比分析了优化座位分配、控制上车人数、引导个人防护等管理策略下的防控效果。结果表明,新冠病毒爆发初期,乘客自发将座间距离增大15%,降低了超30%的感染风险;在防控策略方面,除个人防护可取得显著效果外,通过控制上车人数与优化乘客座位分布,也可大幅降低公交系统内的新冠病毒扩散风险。在最优选座策略下,以现有平均班次客流为参照,乘客感染风险可下降约40%。

    Abstract:

    This paper aims to quantify the spreading risks of infectious disease in public transport vehicles under various distributions of the passengers. Using the spreading characteristics of COVID-19 in 2020 as an example, first, the patterns of customized bus seat choice behaviors before and after the outbreak of the disease ranging from 2019 to 2020 were analyzed. Then, based on weighted encounter network, a susceptible-exposed-infectious-recovered(SEIR) model for epidemic dynamics was constructed, while the risks of spreading of disease with various distributions of passengers were studied. Finally, a comparative analysis was conducted to quantify the impacts of different infectious disease control policies such as seat assignment optimization, ridership control, and personal protection guidance. The results demonstrate that at the beginning of the outbreak of the diseases, customized passengers spontaneously increase their distances by 15% which effectively reduced the risks of infection by over 30%. In terms of the epidemic control policies, in addition to personal protection with significant impacts on reducing the risks, the implementation of ridership control with seat assignment can also largely decrease the risks of spreading of infectious disease in public transport systems. With the optimized allocation of seats, using the current average ridership as the reference, the risk of infection may decline by about 40%.

    参考文献
    [1] DYE C, GAY N. Modeling the SARS epidemic [J]. Science, 2003, 300(5627): 1884.
    [2] 赵敬, 夏承遗, 孙世温, 等. 复杂网络上同时考虑感染延迟和非均匀传播的SIR模型[J]. 智能系统报, 2013, 8: 128.ZHAO Jing, XIA Chengyi, SUN Shiwen, et al. A SIR model considering both infection delay and non-uniform propagation on complex networks[J]. Journal of Intelligent Systems, 2013,8:128.
    [3] BERNOULLI D, BLOWER S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it [J]. Reviews in Medical Virology, 2004, 14(5): 275.
    [4] PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al. Epidemic processes in complex networks [J]. Reviews of Modern Physics, 2015, 87(3): 925.
    [5] BROCKMANN D, HELBING D. The hidden geometry of complex, network-driven contagion phenomena [J]. Science, 2013, 342(6164): 1337.
    [6] WESOLOWSKI A, BUCKEE C O, ENG?-MONSEN K, et al. Connecting mobility to infectious diseases: the promise and limits of mobile phone data [J]. The Journal of Infectious Diseases, 2016, 214(S4): 414.
    [7] MARI L, BERTUZZO E, RIGHETTO L, et al. Modelling cholera epidemics: the role of waterways, human mobility and sanitation [J]. Journal of the Royal Society Interface, 2012, 9(67): 376.
    [8] QIAN X, SUN L, UKKUSURI S V. Scaling of contact networks for epidemic spreading in urban transit systems [J]. Scientific Reports, 2021, 11(1): 1.
    [9] 仲音. 重大决定性胜利 人类文明史上的奇迹[N]. 人民日报,2023-02-18(002).DOI:10.28655/n.cnki.nrmrb.2023.001650.ZHONG Yin. Major decisive victory, a miracle in the history of human civilization[N]. People’s Daily, 2023-02-18(002).DOI:10.28655/n.cnki.nrmrb.2023.001650.
    [10] LIU K, YIN L, MA Z, et al. Investigating physical encounters of individuals in urban metro systems with large-scale smart card data [J]. Physica A: Statistical Mechanics and Its Applications, 2020, 545: 123398.
    [11] MO B, FENG K, SHEN Y, et al. Modeling epidemic spreading through public transit using time-varying encounter network [J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102893.
    [12] SUN L, AXHAUSEN K W, LEE D H, et al. Understanding metropolitan patterns of daily encounters [J]. Proceedings of the National Academy of Sciences, 2013, 110(34): 13774.
    [13] Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) situation summary [EB/OL]. [2022-05-16]. https://www.cdc.gov/coronavirus/2019-ncov/index.html Accessed 25 July 2020.
    [14] Interim U S. Guidance for risk assessment and public health management of healthcare personnel with potential exposure in a healthcare setting to patients with coronavirus disease (COVID-19)[EB/OL].[2022-06-16]. https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assesment-hcp.html.
    [15] READ J M, BRIDGEN J R E, CUMMINGS D A T, et al. Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates[J]. Philosophical Transactions of the Royal Society B, 2021, 376(1829): 20200265.
    [16] 贾斌, 李新刚, 姜锐, 等. 公交车站对交通流影响模拟分析[J]. 物理学报, 2009, 58(10): 6845.JIA Bin, LI Xingang, JIANG Rui, et al. Simulation analysis of the impact of bus stops on traffic flow [J]. Journal of Physics, 2009, 58 (10): 6845
    [17] 吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2): 89WU Jialin, WENG Wenguo The transmission of COVID-19 virus particles in air-conditioned buses and the risk of passengerinfection [J]. Journal of Tsinghua University (Natural Science), 2021, 61 (2): 89
    [18] 中华人民共和国国家卫生健康委员会. 关于印发新型冠状病毒肺炎诊疗方案(试行第八版)的通知 [R]. 北京:中华人民共和国国家卫生健康委员会,2020.State Health Commission of the people’s Republic of China. Notice on the diagnosis and treatment plan for New Coronavirus pneumonia (Trial Eighth Edition)[R]. Beijing:State Health Commission of the people’s Republic of China, 2020.
    [19] CHEN T M, RUI J, WANG Q P, et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus[J]. Infectious Diseases of Poverty, 2020, 9(1): 1.
    [20] LI R, PEI S, CHEN B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science, 2020, 368(6490): 489.
    [21] GANDHI M, MARR L C. Uniting infectious disease and physical science principles on the importance of face masks for COVID-19 [J]. Med, 2021, 2(1): 29.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈煜,吕叶婷,暨育雄,杜豫川.基于选座行为的定制公交车内新冠病毒传播风险建模与分析[J].同济大学学报(自然科学版),2024,52(9):1438~1447

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-10
  • 在线发布日期: 2024-09-27
文章二维码