高声强双层穿孔结构的吸声计算
CSTR:
作者:
作者单位:

1.同济大学 物理科学与工程学院,上海 200092;2.上海市地面交通工具空气动力与热环境模拟重点实验室,上海 201804;3.同济大学 汽车学院,上海 201804

作者简介:

俞悟周,副教授,理学博士,主要研究方向为环境声学,交通工具声学仿真及降噪,新型声学结构。 E-mail: ywzh@tongji.edu.cn

通讯作者:

孙浩钧,理学硕士,主要研究方向为噪声控制。E-mail: sunhaojun_97@163.com

中图分类号:

O429

基金项目:

国家重点研发计划(2022YFE0208000);国家自然科学基金(11874290);中央高校基本科研业务费专项资金


Sound Absorption Calculation of Double-Layered Perforated Sound-Absorbing Structure at High Sound Intensity
Author:
Affiliation:

1.School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;2.Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, Shanghai 201804, China;3.School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    对高声强下不同的穿孔结构非线性声阻抗模型进行比较,分析入射声压对穿孔吸声结构声阻抗的影响,并提出双层穿孔结构的改进传递矩阵法。不同声阻抗模型的实验和计算结果表明,入射声压级小于140 dB时,Park模型和Maa模型的计算结果与实验数据吻合良好;入射声压级为140 ~ 150 dB时,Laly模型的计算结果更接近实验结果。对于高声强下的双层及多层穿孔结构,在所提出的改进传递矩阵法中,根据传递矩阵计算得到各层板表面声压级,每层穿孔的声阻抗根据声压级和穿孔参数进行计算,进而得到总声阻抗。结果表明,入射声压级为120~150 dB时,双层穿孔结构的改进传递矩阵法计算结果与实验数据吻合良好。

    Abstract:

    Different nonlinear acoustic impedance models at high sound intensity are compared, and the influence of incident sound pressure on the acoustic impedance are investigated. An improved transfer matrix method is proposed to calculate the acoustic impedance of double-layered perforated panels. A comparison of the calculation by different nonlinear acoustic impedance models and experiment results at different incident sound pressure levels indicates that the results obtained by the Park model and the Maa model agree with the measurement results well when SPL is lower than 140 dB, while Laly model can get better results when SPL is 140–150 dB. For structure composed of double-layered or multi-layered perforated panels at high sound intensity, according to the improved transfer matrix method, the sound pressure level of each layer is calculated by transfer matrix, and acoustic impedance of each layer is calculated based on sound pressure level and perforation parameters. Results of double-layered perforated panels calculated by improved transfer matrix method coincide with measurement results for incident sound pressure level at 120–150 dB.

    参考文献
    [1] INGARD U, ISING H. Acoustic nonlinearity of an orifice [J]. The Journal of the Acoustical Society of America, 1967, 42(1): 6.
    [2] INGARD U, LABATE S. Acoustic circulation effects and the nonlinear impedance of orifices [J]. The Journal of the Acoustical Society of America, 1950, 22(2):211.
    [3] INGARD U. On the theory and design of acoustic resonators[J]. The Journal of the Acoustical Society of America, 1953, 25(6): 1037.
    [4] MAA D Y. Microperforated panel at high sound intensity [J]. Acta Acustica, 1996, 21(1):10.
    [5] LALY Z, ATALLA N, MESLIOUI S A. Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach [J]. Journal of Sound and Vibration, 2018, 427: 134.
    [6] PARK S H. A design method of micro-perforated panel absorber at high sound pressure environment in launcher fairings [J]. Journal of Sound and Vibration, 2013, 332(3): 521.
    [7] CHANG I J, CUMMINGS A. A time domain solution for the attenuation, at high amplitudes, of perforated tube silencers and comparison with experiment [J]. Journal of Sound and Vibration, 1988, 122(2): 243.
    [8] CUMMINGS A. Acoustic nonlinearities and power losses at orifices [J]. AIAA Journal, 1984, 22(6): 786.
    [9] CUMMINGS A. Transient and multiple frequency sound transmission through perforated plates at high amplitude [J]. The Journal of the Acoustical Society of America, 1986, 79(4): 942.
    [10] GUESS A W. Calculation of perforated plate liner parameters from specified acoustic resistance and reactance [J]. Journal of Sound and Vibration, 1975, 40(1): 119.
    [11] HERSH A S, WALKER B E, CELANO J W. Helmholtz resonator impedance model, part 1: nonlinear behavior [J]. AIAA Journal, 2003, 41(5): 795.
    [12] TAYONG R, DUPONT T, LECLAIRE P. On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation [J]. The Journal of the Acoustical Society of America, 2010, 127(5):2875.
    [13] KRAFT R E, YU J, KWAN H W. Acoustic treatment design scaling methods[R]. Cincinnati: National Cincinnati Aeronautics and Space Administration, 1999.
    [14] MELLING T H. The acoustic impedance of perforates at medium and high sound pressure levels [J]. Journal of Sound and Vibration, 1973, 29(1):1.
    [15] ZHOU C, LI X, TIAN J. An experimental study of the nonlinear acoustic properties of a double-layered perforated panel absorber under broad-band noise excitations [C/CD]// 36th International Congress and Exhibition on Noise Control Engineering. 2007. Istanbul: Institute of Noise Control Engineering, 2007.
    [16] LEE D H, KWON Y P. Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method[J]. Journal of Sound and Vibration, 2004, 278(4): 847.
    [17] LEE F C, CHEN W H. Acoustic transmission analysis of multi-layer absorbers [J]. Journal of Sound and Vibration, 2001, 248(4): 621.
    [18] MORSE P M, INGARD K U. Theoretical acoustics[M]. Princeton: Princeton University Press, 1986.
    [19] MAA D Y. Potential of microperforated panel absorber [J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2861.
    [20] ALLARD J F, DAIGLE G. Propagation of sound in porous media [J]. The Journal of the Acoustical Society of America, Modeling Sound Absorbing Materials, 1994, 95(5):2785.
    相似文献
    引证文献
引用本文

俞悟周,贺银芝,姜在秀,孙浩钧.高声强双层穿孔结构的吸声计算[J].同济大学学报(自然科学版),2024,52(9):1464~1468

复制
分享
文章指标
  • 点击次数:62
  • 下载次数: 397
  • HTML阅读次数: 734
  • 引用次数: 0
历史
  • 收稿日期:2023-07-30
  • 在线发布日期: 2024-09-27
文章二维码