基于矢量量化变分自编码器的混凝土表观裂缝检测算法
作者:
作者单位:

同济大学 土木工程学院,上海 200092

作者简介:

刘 超,副教授,博士生导师、工学博士,主要研究方向为智能监测技术、精细化设计理论等。 E-mail: lctj@tongji.edu.cn

中图分类号:

U445.7+1


Detection Algorithm of Concrete Structural Apparent Cracks Based on VQ-VAE-2
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于第2代矢量量化变分自编码器(VQ?VAE?2)的自监督混凝土表观裂缝检测算法,可以在缺少裂缝样本的条件下实现高效检测。以重建误差为检测指标,利用无裂缝图片训练VQ?VAE?2,使其在重建裂缝图片时产生更大的重建误差;在计算重建误差时将原图和重建图片均分割成若干图块,取对应图块间重建误差最大值作为图片的重建误差,以增大2类图片的重建误差差异。结果表明,该算法的精确率为0.954,召回率为0.959,准确率为0.956,F1分数为0.957。在无裂缝样本作为训练集的情况下,该算法能较好地完成混凝土表观裂缝检测任务。

    Abstract:

    In this paper, we propose a self-supervised algorithm based on VQ-VAE-2 for the automated detection of concrete structural apparent cracks. The algorithm demonstrates the capability to effectively detect cracks without available crack samples. By taking the reconstruction error as detection index, VQ-VAE-2 is trained on crack-free images. When applied to images with cracks, VQ-VAE-2 produces higher reconstruction errors. The original and reconstructed images are partitioned into blocks for calculating the reconstruction error. The maximum value of the reconstruction error between corresponding blocks is taken as the reconstruction error of the image. This approach increases the difference in reconstruction error between the two types of images. The results show that the algorithm achieves a precision of 0.954, a recall of 0.959, an accuracy of 0.956, and an F1 score of 0.957. These results indicate that the algorithm can effectively detect concrete structural apparent cracks even without crack samples in the training set.

    参考文献
    [1] YOU Y, ZHANG Z, HSIEH C, et al. ImageNet training in minutes[C]//Proceedings of the 47th International Conference on Parallel Processing. New York: Association for Computing Machinery, 2018: 1-10.
    [2] SALINI R, XU B, PAPLAUSKAS P. Pavement distress detection with PICUCHA methodology for area-scan cameras and dark images[J]. Civil Engineering Journal, 2017, 26(1): 34.
    [3] 梁雪慧, 程云泽, 张瑞杰, 等. 基于卷积神经网络的桥梁裂缝识别和测量方法[J]. 计算机应用, 2020, 40(4): 1056.LIANG Xuehui, CHENG Yunze, ZHANG Ruijie, et al. Bridge crack classification and measurement method based on deep convolutional neural network[J]. Journal of Computer Applications, 2020, 40(4): 1056.
    [4] ZHUANG X, WANG D, PENG B, et al. Life-cycle civil engineering: innovation, theory and practice[M]. London: CRC Press, 2021.
    [5] 毛莺池, 唐江红, 王静, 等. 基于Faster R?CNN的多任务增强裂缝图像检测方法[J]. 智能系统学报, 2021, 16(2): 286.MAO Yingchi, TANG Jianghong, WANG Jing, et al. Multi-task enhanced dam crack image detection based on Faster R-CNN[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 286.
    [6] 侯越, 陈逸涵, 顾兴宇, 等. 基于卷积自编码的沥青路面目标与裂缝智能识别[J]. 中国公路学报, 2020, 33(10): 288.HOU Yue, CHEN Yihan, GU Xingyu, et al. Automatic identification of pavement objects sand cracks using the convolutional auto-encoder[J]. China Journal of Highway and Transport, 2020, 33(10): 288.
    [7] XU B, LIU C. Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples[J]. Measurement, 2022, 196: 111219.
    [8] 黄超,胡志军,徐勇,等. 基于视觉的车辆异常行为检测综述[J].模式识别与人工智能, 2020, 33(3):234.HUANG Chao, HU Zhijun, XU Yong, et al. Vision-based abnormal vehicle behavior detection: a survey [J]. Pattern Recognition and Artificial Intelligence, 2020, 33(3):234.
    [9] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1):1.
    [10] HASAN M, CHOI J, NENUMANN J, et al. Learning temporal regularity in video sequences[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 733-742.
    [11] ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]//Proceedings of the 23rd ACM SIGKDD, International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2017: 665-674.
    [12] GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.
    [13] RAZAVI A, OORD A, VINVALS O. Generating diverse high-fidelity images with VQ-VAE-2[C]//Advances in Neural Information Processing Systems. New York: Curran Associates, 2019:14837-14847.
    [14] OORD A VINVALS O, KAVUKCUOGLU K. Neural discrete representation learning[C]//Advances in Neural Information Processing Systems. New York: Curran Associates, 2017: 6309-6318.
    [15] ?ZGENEL ?, SORGU? A. Performance comparison of pretrained convolutional neural networks on crack detection in buildings[C]//Proceedings of the International Symposium on Automation and Robotics in Construction. Berlin: IAARC Publications, 2018: 1-8.
    [16] BERGMANN P, LWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]//Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Setúbal: Science and Technology Publications, 2019: 1-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘超,吴纪曙.基于矢量量化变分自编码器的混凝土表观裂缝检测算法[J].同济大学学报(自然科学版),2024,52(11):1699~1705

复制
分享
文章指标
  • 点击次数:31
  • 下载次数: 135
  • HTML阅读次数: 7
  • 引用次数: 0
历史
  • 收稿日期:2022-11-28
  • 在线发布日期: 2024-12-03
文章二维码