基于MI特征选择的车辆能耗高精度预测方法
作者:
作者单位:

1.同济大学 汽车学院, 上海 201800;2.南昌智能新能源汽车研究院, 南昌 330052;3.江西五十铃汽车有限公司, 南昌 330199

作者简介:

王宁(1977—),男,副教授,博士生导师,管理学博士,主要研究方向为汽车大数据分析。E-mail: wangning@tongji.edu.cn

通讯作者:

聂辽栋(1998—),男,博士生,主要研究方向为汽车大数据分析。E-mail: 2311436@tongji.edu.cn

中图分类号:

U461.8

基金项目:

南昌智能新能源汽车研究院科研项目(TPD-TC202303-11)


High-Precision Vehicle Energy Consumption Prediction using Mutual Information Feature Selection
Author:
Affiliation:

1.School of Automotive Studies, Tongji University, Shanghai 201800, China;2.Nanchang Automotive Institute of Intelligence & New Energy, Nanchang 330052, China;3.Jiangxi Isuzu Motors Co., Ltd., Nanchang 330199, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,机器学习方法在车辆实时能耗预测方面得到了广泛应用,但实车采集数据中存在的精度不足、字段缺失以及多重共线性等问题,尤其是同款车型中驾驶工况和驾驶者行为存在显著差异,限制了能耗预测准确性和泛化能力的进一步提升。为此,本文系统考虑特征冗余度、数据平衡性、货运趟次、运输能力、路段拥挤程度和司机驾驶时长等因素,使用交互信息(MI)方法选择关键特征,并构建司机特征画像作为独立特征,进而结合XGBoost、RF和MLP等机器学习方法提出一种基于MI特征选择的能耗高精度预测方法,然后基于120辆轻型卡车的T-BOX采集数据进行实例验证。结果表明,本文提出的预测方法能够显著提高不同驾驶行为和驾驶工况下的能耗预测精度,研究成果可为开发预测轻卡能耗的通用模型提供参考。

    Abstract:

    In recent years, machine learning methods have been widely adopted for real-time vehicle energy consumption predictions. However, the accuracy and generalizability of these predictions are often hindered by challenges such as data imprecision, missing fields, multicollinearity, and substantial difference in driving conditions and driver behaviors among identical vehicle models. To address these issues, this study systematically considers factors such as feature redundancy, data balance, freight trip frequency, transport capacity, traffic congestion and driving duration. Subsequently, an energy consumption prediction model with high precision is developed using a combination of machine learning methods such as XGBoost, Random Forest (RF), and Multilayer Perceptron (MLP). The model utilizes key features selected through the Mutual Information (MI) method, along with a constructed driver profile that captures characteristic behaviors as an independent feature. The proposed method is validated using T-BOX data collected from 120 light trucks. Experimental results indicate that the prediction method significantly enhances the prediction accuracy of energy consumption under various driving behaviors and conditions. This research contributes to the development of models with high precision in estimating the fuel consumption of light trucks.

    参考文献
    相似文献
    引证文献
引用本文

王宁,李秀峰,聂辽栋,刘登程,于勤,樊华春,徐炜.基于MI特征选择的车辆能耗高精度预测方法[J].同济大学学报(自然科学版),2024,52(S1):39~45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-20
  • 出版日期:
文章二维码